Abstract:
Methods to program a floating gate memory array include, in response to a request to program a second bit of the floating gate memory array, at a first time, outputting a programming voltage to cause a first node voltage at a first source of a first transistor corresponding to a first bit, wherein the first node voltage is greater than a second node voltage at a second source of a second transistor corresponding to the second bit. The method further includes at a second time, increasing the programming voltage of the floating gate memory array to program the second bit of the floating gate memory array.
Abstract:
An inkjet printing system, fluid ejection system and method thereof are disclosed. The fluid ejection system includes a fluid ejection device and a determination module to determine a supply condition based on the count value output by the converter module. The fluid ejection device includes a fluid supply chamber to store fluid, an ejection chamber including a nozzle and a corresponding ejection member to selectively eject the fluid through the nozzle, a pressure sensor unit having a sensor plate to output a voltage value corresponding to a cross-sectional area of an amount of fluid in the ejection chamber. The fluid ejection system also includes a converter module to output a count value corresponding to the voltage value output by the pressure sensor unit.
Abstract:
One example provides a fluidic die including a nozzle layer disposed on a substrate, the nozzle layer having an upper surface opposite the substrate and including a plurality of nozzles formed therein, each nozzle including a fluid chamber and a nozzle orifice extending through the nozzle layer from the upper surface to the fluid chamber. A conductive trace is exposed to the upper surface of the nozzle layer and extends proximate to a portion of the nozzle orifices, an impedance of the conductive trace indicative of a surface condition of the upper surface of the nozzle layer.
Abstract:
One example provides a fluidic die including a semiconductor substrate, and a nozzle layer disposed on the substrate, the nozzle layer having a top surface opposite the substrate and including a nozzle formed therein, the nozzle including a fluid chamber disposed below the top surface and a nozzle orifice extending through the nozzle layer from the top surface to the fluid chamber, the fluid chamber to hold fluid, and the nozzle to eject fluid drops from the fluid chamber via the nozzle orifice. An electrode is disposed in contact with the nozzle layer about a perimeter of the nozzle orifice, the electrode to carry an electrical charge to adjust movement of electrically charged components of the fluid.
Abstract:
In example implementations, an apparatus is provided. The apparatus includes a power supply, a first switch coupled, a second switch, and a second resistor. The first switch is coupled to the power supply and a low voltage control block. The second switch is coupled to the power supply and the first switch. The second resistor is coupled to the second switch to generate heat in response to being energized. The first switch is to control activation of the second switch via a fire signal from the low voltage control block and through the first resistor to energize the second resistor and cause a nozzle chamber to dispense a printing fluid.
Abstract:
It is disclosed a printing agent container having ink an authenticity detection mechanisms comprising: a receptacle having a top wall a bottom wall opposing such top wall and a sidewall between such top wall and such bottom wall; an internal volume defined by such receptacle that contains a printing agent, and a vibration transducer on one of the side walls, wherein the container is to be mechanically coupled to a carriage so that the printing fluid is disposed on the bottom surface, being the vibration transducer to detect a vibration signal induced by the carriage and wherein the container comprises a communication channel to a controller being the controller to receive through the communication channel a container signature from the vibration transducer and to identify a container identification signal associated to the container signature.
Abstract:
A fluid ejection system may include a fluidic die comprising at least one fluid ejection device, at least one electrical impedance sensor to detect at least one impedance value during a plurality of stages of existence of a drive bubble in at least one firing chamber associated with the at least one fluid ejection device, and a service station wherein, based on the impedance values detected, the printing system services the at least one fluid actuator.
Abstract:
A fluidic die may include at least two zones, a reference temperature sensor communicatively coupled to each zone, a calibration voltage generator coupled between the zones and the reference temperature sensor, and a calibration loop circuit associated with each zone to calibrate each zone based on a voltage provided by the reference temperature sensor.
Abstract:
One example provides a fluidic die including a nozzle layer disposed on a substrate, the nozzle layer having an upper surface opposite the substrate and including a plurality of nozzles formed therein, each nozzle including a fluid chamber and a nozzle orifice extending through the nozzle layer from the upper surface to the fluid chamber. A conductive trace is exposed to the upper surface of the nozzle layer and extends proximate to a portion of the nozzle orifices, an impedance of the conductive trace indicative of a surface condition of the upper surface of the nozzle layer.
Abstract:
In one example in accordance with the present disclosure, a fluidic die is described. The fluidic die includes a number of zones. Each zone includes a number of sets, each set including a number of fluidic devices. Each fluidic device includes a fluid chamber and a fluid actuator disposed in the chamber. Each fluidic device also includes a sensor to sense a characteristic of the zone and a register to hold an adjustment value that indicates how much to adjust a firing signal in the zone. A delay device per set delays the firing signal at a corresponding set. An adjustment device per set generates an adjusted firing signal based on the adjustment value, a delayed firing signal corresponding to the set, and at least one delayed firing signal received from another set. The delayed firing signals from different sets are time shifted relative to one another.