摘要:
A liquid jet recording head comprises a substrate having a resistive heater layer and at least one pair of mutually confronting electrodes electrically connected with the resistive heater layer at least one part of each of said one pair of electrodes being coated with the resistive heater layer.A liquid jet recording head comprises a support, an electrothermal transducer provided on the support which is composed of at least a resistive heater layer and one pair of electrodes mutually confronting and electrically connected with the resistive heater layer, and a liquid flow path constructing member provided in correspondence with the electrothermal transducer and constituting a liquid flow path communicating with an orifice for ejecting liquid. The electrodes and the resistive heater layer are formed successively on the support to form the electrothermal transducer.
摘要:
A planar heat generating resistor has a heat generating resistor layer formed on or above a support member and a pair of opposing electrodes formed on the heat generating resistor layer, such that a width of the heat generating layer at the electrode area is larger than a width of the electrodes and a voltage is applied across the electrodes, in which a ratio of a maximum value of a gradient of .phi., .sqroot.(.differential..phi./.differential.x).sup.2 +(.differential..phi./.differential.y).sup.2 to a value of .sqroot.(.differential..phi./.differential.x).sup.2 +(.differential..phi./.differential.y).sup.2 at a center of the resistor is no larger than 1.4 when a Laplace equation .differential..sup.2 /.differential.x.sup.2 +.differential..sup.2 .phi./.differential.y.sup.2 =0 is solved for the heat generating resistor when an orthogonal coordinate system X-Y is defined on the resistor surface, a potential at a point (x,y) on the resistor surface is represented by .phi.(x,y), a boundary value is imparted to an area of a circumferential boundary of the resistor which contacts to one of the electrodes, a different boundary value is imparted to an area which contacts to the other electrode, and a boundary condition in which a differential coefficient of .phi. to a normal direction of the circumferential boundary is zero is imparted to an area which does not contact to any of the electrodes.
摘要:
Provided is a method for manufacturing an ejection element substrate which is provided with a flow-channel-forming member having an ejection orifice for ejecting a liquid and a liquid flow channel that is communicated with the ejection orifice, and a substrate having a supply port for supplying the liquid to the liquid flow channel, and further a filter structure formed in the bottom of the supply port, including: forming the supply port by forming a through-hole by etching the substrate from a second face of the substrate on the side opposite to a first face of the substrate, on which the flow-channel-forming member is disposed; providing a resinous protection film on the side face and the bottom of the supply port; and forming a minute opening in the resinous protection film in the bottom of the supply port by carrying out a laser processing from the side of the second face.
摘要:
A manufacturing method for manufacturing a liquid ejection element including a liquid flow path which is open at an ejection outlet for ejecting liquid, and an energy generating member for generating energy usable for ejecting the liquid from liquid flow path through the ejection outlet, the manufacturing method, includes a step of forming the energy generating member on a front side of a substrate; a step of forming a top plate member on the side having the energy generating member formed by the energy generating member forming step, wherein the top plate member is a member in which the liquid flow path and the ejection outlet are formed; and a step of thinning the substrate, having the top plate member formed thereon by the top plate member forming step, from a back side thereof.
摘要:
A liquid ejection head includes a substrate including, at a surface thereof, an ejection energy generating means for generating ejection energy for ejecting liquid, a flow path forming member provided with an ejection outlet, the substrate further including a liquid supply opening, penetrating therethrough, for supplying the liquid to be ejected by the ejection energy to a flow path of the flow path forming member; a reinforcing member connected to a back side of the substrate; a first penetrating electrode, penetrating the substrate from a front side to the back side thereof, for supplying electric power to the ejection energy generating means; and a second penetrating electrode penetrating the reinforcing member from a front side to a back side thereof, the second penetrating electrode being electrically connected to the first penetrating electrode.
摘要:
A method of manufacturing a liquid ejection head and a liquid ejection head capable of preventing corrosion of electrodes are provided. A method of manufacturing a liquid ejection head includes: a steps of forming porous silicon areas in portions of a silicon substrate where the liquid paths are to be formed; a steps of forming in layers in the porous silicon areas a protective layer, a heating resistor layer, an electrode layer and a heat accumulation layer; a steps of forming ink ejection openings in the silicon substrate; and a steps of removing the porous silicon areas.
摘要:
A manufacturing method for manufacturing a liquid ejection element substrate for a liquid ejection element for ejecting liquid through an ejection outlet, the liquid ejection element substrate including an energy generating element for generating energy for ejecting the liquid and an electrode for supplying electric power to the energy generating element, includes a step of forming on a front side of the substrate an energy generating element and wiring electrically connecting with the energy generating element; a step of forming a recess in the form of a groove on the side of the substrate at a position where the wiring is formed; a step of forming an embedded electrode electrically connected with the wiring by filling electrode material in the recess; and a step of thinning the substrate at a back side after formation of the embedded electrode to expose the embedded electrode at the back side of the substrate, thus providing an electrode exposed at the back side of the substrate.
摘要:
Disclosed is a manufacturing method of a liquid discharge head having a discharge port which discharges a liquid, a flow path which communicates with the discharge port, a heating portion which is disposed correspondingly to the flow path and which generates heat energy for use in discharging the liquid from the discharge port and a protective layer which prevents the heating portion from being brought into contact with the liquid, the method comprising: forming porous silicon from a surface to an inner portion of a silicon substrate; sealing pores present in the surface of the porous silicon to smoothen the surface of the porous silicon; forming the protective layer on the smoothened surface of the porous silicon; forming the heating portion on the protective layer; forming the discharge port; and removing the porous silicon to form the flow path.
摘要:
The present invention provides a method for manufacturing an ink jet recording head utilizing ink bubbling by heating of an exothermic resistor to thereby eject ink and a method manufacturing the same, including the steps of: preparing a substrate provided with the exothermic resistor; applying such first resin on the substrate as to provide a first mold shape for forming the nozzle channel and the movable member; forming the first mold shape using the first resin; applying, on the substrate, second resin over the first mold shape for forming the nozzle channel and the movable member; and removing the first mold shape. By this method, the movable member is formed in the nozzle channel between the ink inlet and the exothermic resistor to thereby provide a high-density, high-accuracy ink jet recording head which can improve a frequency response while maintaining proper discharge performance.
摘要:
The method of the present invention of manufacturing a nozzle plate for an ink jet recording head comprises a first step of forming a layer of a resin comprising a benzene ring on a metal substrate, a second step of patterning the layer of the resin by means of excimer laser and partially exposing the metal substrate, a third step of forming a metal layer having a thickness smaller than that of the resin layer on the exposed surface of the metal substrate by electroforming, and a fourth step of separating the metal layer from the metal substrate and the resin layer.