Abstract:
An alternating stack of two different semiconductor materials is patterned to include two pad regions and nanowire regions. A semiconductor material is laterally etched selective to another semiconductor material to form a nanomesh including suspended semiconductor nanowires. Gate dielectrics, a gate electrode, and a gate cap dielectric are formed over the nanomesh. A dielectric spacer is formed around the gate electrode. The semiconductor materials in the two pad regions and physically exposed portions of the nanomesh are removed employing the dielectric spacer and the gate cap dielectric as an etch mask. A source region and a drain region are epitaxially grown from end surfaces of the nanomesh.
Abstract:
A gate-first processing scheme for forming a nanomesh field effect transistor is provided. An alternating stack of two different semiconductor materials is patterned to include two pad regions and nanowire regions. A semiconductor material is laterally etched selective to another semiconductor material to form a nanomesh including suspended semiconductor nanowires. A stack of a gate dielectric, a gate electrode, and a gate cap dielectric is formed over the nanomesh. A dielectric spacer is formed around the gate electrode. An isotropic etch is employed to remove dielectric materials that are formed in lateral recesses of the patterned alternating stack. A selective epitaxy process can be employed to form a source region and a drain region.
Abstract:
A field effect transistor (FET) includes a substrate; a channel material located on the substrate, the channel material comprising one of graphene or a nanostructure; a gate located on a first portion of the channel material; and a contact aligned to the gate, the contact comprising one of a metal silicide, a metal carbide, and a metal, the contact being located over a source region and a drain region of the FET, the source region and the drain region comprising a second portion of the channel material.
Abstract:
Devices, systems, methods, and/or computer-implemented methods that can facilitate a qubit device comprising a superconducting circuit provided on an encapsulated vacuum cavity are provided. According to an embodiment, a device can comprise a substrate having an encapsulated vacuum cavity provided on the substrate. The device can further comprise a superconducting circuit provided on the encapsulated vacuum cavity.
Abstract:
Techniques for using stark tone pulses to mitigate cross-resonance collision in qubits are presented. A tone management component can control application of pulses to qubits by a tone generator component to mitigate undesirable frequency collisions between qubits. The tone generator component (TGC) can apply an off-resonant tone pulse to a qubit during a gate to induce a stark shift. TGC can apply a cross-resonance tone pulse to a control qubit at a frequency associated with the qubit, wherein the frequency can be stark shifted based on the off-resonant tone pulse. The qubit can be a target qubit, the control qubit itself, or a spectator qubit that can be coupled to the target qubit or the control qubit. The gate can be a cross-resonance gate, a two-qubit gate, or a measurement gate that can utilize an echo sequence, a target rotary, or active cancellation.
Abstract:
Techniques for using stark tone pulses to mitigate cross-resonance collision in qubits are presented. A tone management component can control application of pulses to qubits by a tone generator component to mitigate undesirable frequency collisions between qubits. The tone generator component (TGC) can apply an off-resonant tone pulse to a qubit during a gate to induce a stark shift. TGC can apply a cross-resonance tone pulse to a control qubit at a frequency associated with the qubit, wherein the frequency can be stark shifted based on the off-resonant tone pulse. The qubit can be a target qubit, the control qubit itself, or a spectator qubit that can be coupled to the target qubit or the control qubit. The gate can be a cross-resonance gate, a two-qubit gate, or a measurement gate that can utilize an echo sequence, a target rotary, or active cancellation.
Abstract:
Systems and techniques that facilitate mapping a heavy-hex qubit connection topology to a rectilinear physical qubit layout are provided. In various embodiments, a device can comprise a qubit lattice on a substrate. In various aspects, the qubit lattice can comprise one or more first qubit tiles. In various cases, the one or more first qubit tiles can have a first shape. In various instances, the qubit lattice can further comprise one or more second qubit tiles. In various cases, the one or more second qubit tiles can have a second shape. In various aspects, the one or more first qubit tiles can be tessellated with the one or more second qubit tiles.
Abstract:
Techniques for using stark tone pulses to mitigate cross-resonance collision in qubits are presented. A tone management component can control application of pulses to qubits by a tone generator component to mitigate undesirable frequency collisions between qubits. The tone generator component (TGC) can apply an off-resonant tone pulse to a qubit during a gate to induce a stark shift. TGC can apply a cross-resonance tone pulse to a control qubit at a frequency associated with the qubit, wherein the frequency can be stark shifted based on the off-resonant tone pulse. The qubit can be a target qubit, the control qubit itself, or a spectator qubit that can be coupled to the target qubit or the control qubit. The gate can be a cross-resonance gate, a two-qubit gate, or a measurement gate that can utilize an echo sequence, a target rotary, or active cancellation.
Abstract:
Techniques regarding an embedded microstrip transmission line implemented in one more superconducting microwave electronic devices are provided. For example, one or more embodiments described herein can comprise an apparatus, which can include a superconducting material layer positioned on a raised portion of a dielectric substrate. The raised portion can extend from a surface of the dielectric substrate. The apparatus can also comprise a dielectric film that covers at least a portion of the superconducting material layer and the raised portion of the dielectric substrate.
Abstract:
Techniques regarding an embedded microstrip transmission line implemented in one more superconducting microwave electronic devices are provided. For example, one or more embodiments described herein can comprise an apparatus, which can include a superconducting material layer positioned on a raised portion of a dielectric substrate. The raised portion can extend from a surface of the dielectric substrate. The apparatus can also comprise a dielectric film that covers at least a portion of the superconducting material layer and the raised portion of the dielectric substrate.