Transmon qubits with trenched capacitor structures

    公开(公告)号:US11289637B2

    公开(公告)日:2022-03-29

    申请号:US16381563

    申请日:2019-04-11

    Abstract: A qubit includes a substrate, and a first capacitor structure having a lower portion formed on a surface of the substrate and at least one first raised portion extending above the surface of the substrate. The qubit further includes a second capacitor structure having a lower portion formed on the surface of the substrate and at least one second raised portion extending above the surface of the substrate. The first capacitor structure and the second capacitor structure are formed of a superconducting material. The qubit further includes a junction between the first capacitor structure and the second capacitor structure. The junction is disposed at a predetermined distance from the surface of the substrate and has a first end in contact with the first raised portion and a second end in contact with the second raised portion.

    Transmon qubit flip-chip structures for quantum computing devices

    公开(公告)号:US11227229B2

    公开(公告)日:2022-01-18

    申请号:US17027388

    申请日:2020-09-21

    Abstract: A quantum computing device is formed using a first chip and a second chip, the first chip having a first substrate, a first set of pads, and a set of Josephson junctions disposed on the first substrate. The second chip has a second substrate, a second set of pads disposed on the second substrate opposite the first set of pads, and a second layer formed on a subset of the second set of pads. The second layer is configured to bond the first chip and the second chip. The subset of the second set of pads corresponds to a subset of the set of Josephson junctions selected to avoid frequency collision between qubits in a set of qubits. A qubit is formed using a Josephson junction from the subset of Josephson junctions and another Josephson junction not in the subset being rendered unusable for forming qubits.

    CRYOGENIC-STRIPLINE MICROWAVE ATTENUATOR

    公开(公告)号:US20210119313A1

    公开(公告)日:2021-04-22

    申请号:US17131916

    申请日:2020-12-23

    Abstract: The technology described herein is directed towards a cryogenic-stripline microwave attenuator. A first high thermal conductivity substrate such as sapphire and a second high thermal conductivity substrate such as sapphire, along with a signal conductor comprising one or more attenuator lines between the substrates form a stripline. A compression component such as one or more screws, vias (plus clamps) and/or clamps presses the first high thermal conductivity substrate against one side of the signal conductor and presses the second high thermal conductivity substrate against another side of the signal conductor. The high thermal conductivity of the substrates facilitates improved thermalization, while the pressing of the substrates against the conductor reduces the thermal boundary (Kapitza) resistance and thereby, for example, improves thermalization and reduces thermal noise.

Patent Agency Ranking