Abstract:
Photonic circuits are disclosed having an efficient optical power distribution network. Laser chips (InP) having different wavelengths are flip-chip assembled near the center of a silicon photonic chip. Each InP die has multiple optical lanes, but a given die has only one wavelength. Waveguides formed in the photonic chip are optically connected to the lanes, and fan out to form multiple waveguide sets, where each waveguide set has one of the waveguides from each of the different wavelengths, i.e., one waveguide from each InP die. The waveguide network is optimized to minimize the number of crossings that any given waveguide may have, and no waveguide having a particular wavelength crosses another waveguide of the same wavelength. The unique arrangements of light sources and waveguides allows the use of a smaller number of more intense laser sources, particularly in applications such as performance-optimized datacenters where liquid cooling systems may be leveraged.
Abstract:
Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
Abstract:
A method and apparatus for controlling operation of an electro-optic modulator is disclosed. A first intensity of light is obtained at an input to the electro-optic modulator. A second intensity of light is obtained at an output of the electro-optic modulator. A difference between the obtained first intensity and the obtained second intensity is used to control a biasing of a modulator transfer function of the electro-optic modulator to control the electro-optic modulator.
Abstract:
Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.
Abstract:
A polarization splitter and rotator of a wafer chip, an opto-electronic device and method of use is disclosed. The first waveguide of the wafer chip is configured to receive an optical signal from an optical device and propagate a transverse electric eigenstate of the received optical signal. The second waveguide is configured to receive a transverse magnetic eigenstate of the received optical signal from the first waveguide. The second waveguide includes a splitter end, a middle section and a rotator end, wherein the splitter end includes a layer of polycrystalline silicon, a layer of silicon oxide and a layer of silicon nitride, the rotated end includes a layer single crystal silicon, a layer silicon oxide and a layer of silicon nitride, and the middle section includes layers of single crystal silicon, silicon oxide polycrystalline silicon and silicon nitride.
Abstract:
A polarization splitter and rotator of a wafer chip, an opto-electronic device and method of use is disclosed. The first waveguide of the wafer chip is configured to receive an optical signal from an optical device and propagate a transverse electric eigenstate of the received optical signal. The second waveguide is configured to receive a transverse magnetic eigenstate of the received optical signal from the first waveguide. The second waveguide includes a splitter end, a middle section and a rotator end, wherein the splitter end includes a layer of polycrystalline silicon, a layer of silicon oxide and a layer of silicon nitride, the rotated end includes a layer single crystal silicon, a layer silicon oxide and a layer of silicon nitride, and the middle section includes layers of single crystal silicon, silicon oxide polycrystalline silicon and silicon nitride.
Abstract:
A polarization splitter and rotator of a wafer chip, an opto-electronic device and method of use is disclosed. The first waveguide of the wafer chip is configured to receive an optical signal from an optical device and propagate a transverse electric eigenstate of the received optical signal. The second waveguide is configured to receive a transverse magnetic eigenstate of the received optical signal from the first waveguide. The second waveguide includes a splitter end, a middle section and a rotator end, wherein the splitter end includes a layer of polycrystalline silicon, a layer of silicon oxide and a layer of silicon nitride, the rotated end includes a layer single crystal silicon, a layer silicon oxide and a layer of silicon nitride, and the middle section includes layers of single crystal silicon, silicon oxide polycrystalline silicon and silicon nitride.
Abstract:
A method and apparatus for controlling operation of an electro-optic modulator is disclosed. A first intensity of light is obtained at an input to the electro-optic modulator. A second intensity of light is obtained at an output of the electro-optic modulator. A difference between the obtained first intensity and the obtained second intensity is used to control a biasing of a modulator transfer function of the electro-optic modulator to control the electro-optic modulator.
Abstract:
A method for adjusting a resonance frequency of a qubit in a quantum mechanical device includes providing a substrate having a frontside and a backside, the frontside having at least one qubit formed thereon, the at least one qubit comprising capacitor pads; and removing substrate material from the backside of the substrate at an area opposite the at least one qubit to alter a capacitance around the at least one qubit so as to adjust a resonance frequency of the at least one qubit.
Abstract:
Techniques for increasing efficiency of thermo-optic phase shifters using multi-pass heaters and thermal bridges are provided. In one aspect, a thermo-optic phase shifter device includes: a plurality of optical waveguides formed in an SOI layer over a buried insulator; at least one heating element adjacent to the optical waveguides; and thermal bridges connecting at least one of the optical waveguides directly to the heating element. A method for forming a thermo-optic phase shifter device is also provided.