Abstract:
An optical reader system is described herein which has a single mode (SM) optical fiber launch/receive system that uses one or more SM optical fibers to interrogate a biosensor and does not use multimode (MM) optical fibers to interrogate the biosensor. The use of the SM optical fiber launch/receive system effectively reduces angular sensitivity, reduces unwanted system reflections, improves overall angular tolerance, and improves resonant peak reflectivity and resonant peak width. Two specific embodiments of the SM optical fiber launch/receive system are described herein which include: (1) a dual fiber collimator launch/receive system; and (2) a single fiber launch/receive system that interrogates the biosensor at a normal incidence.
Abstract:
According to one embodiment of the present invention, a programmable light source comprises one or more semiconductor lasers, a wavelength conversion device, and a laser controller. The controller is programmed to operate the semiconductor laser using a modulated feedback control signal. The wavelength control signal is adjusted based on the results of a comparison of a detected intensity signal with a feedback signal to align the lasing wavelength with the conversion efficiency peak of the wavelength conversion device. Laser controllers and projections systems operating according to the control concepts of the present invention are also provided.
Abstract:
The present invention relates generally to semiconductor lasers and laser scanning systems and, more particularly, to schemes for controlling wavelength in semiconductor lasers. According to one embodiment of the present invention, a method of minimizing laser wavelength variations in a semiconductor laser is provided. According to the method, one or more of the laser drive currents is configured to comprise a drive portion and a wavelength recovery portion. The wavelength recovery portion of the drive current comprises a recovery amplitude IR that is distinct from the drive amplitude ID and a recovery duration tR that is less than the drive duration tD. The recovery amplitude IR and duration tR are sufficient to recover carrier density distribution distorted by gain compression effects prior to recovery. Additional embodiments are disclosed and claimed.
Abstract:
An optical reader system is described herein which has a single mode (SM) optical fiber launch/receive system that uses one or more SM optical fibers to interrogate a biosensor and does not use multimode (MM) optical fibers to interrogate the biosensor. The use of the SM optical fiber launch/receive system effectively reduces angular sensitivity, reduces unwanted system reflections, improves overall angular tolerance, and improves resonant peak reflectivity and resonant peak width. Two specific embodiments of the SM optical fiber launch/receive system are described herein which include: (1) a dual fiber collimator launch/receive system; and (2) a single fiber launch/receive system that interrogates the biosensor at a normal incidence.
Abstract:
A swept wavelength imaging optical interrogation system and a method for using the same to interrogate one or more biosensors are described herein. The swept wavelength imaging optical interrogation system is built upon a swept wavelength optical interrogation technology where a 2-D label free image is extracted from a series of high speed spectral images of the biosensor(s) without the need of performing mechanical scanning.
Abstract:
According to one aspect of the present invention, a semiconductor laser comprising a laser chip, a light wavelength conversion device, and a tunable lens according to the present invention is provided. The tunable lens comprises first and second fluid lens components positioned to direct light from the laser chip to the light wavelength conversion device. The first and second fluid lens components are oriented and configured such that the first and second longitudinal tuning axes defined by the lens components are skewed relative to each other and such that the respective curvatures of the lens surfaces of each lens component are variable. In accordance with another embodiment of the present invention, a tunable lens is provided comprising the first and second fluid lens components. Additional embodiments are disclosed.
Abstract:
The optical interrogation system comprises an optical sensor and an optical isolator that filters parasitic reflections introduced by the optical sensor.
Abstract:
A transparent glass substrate having an antiglare surface that minimizes sparkle. The antiglare surface has a roughened portion that surface that has a RMS amplitude of at least amplitude of at least about 80 nm. The antiglare surface may also include a portion that is unroughened, or flat. The fraction of the antiglare surface that is roughened is at least about 0.9, and the fraction of the surface that is unroughened is less than about 0.10. The antiglare surface has a pixel power deviation of less than about 7%.
Abstract:
A transparent substrate having an antiglare surface with reduced display sparkle. The transparent substrate has a roughened antiglare surface and a diffraction element below the antiglare surface. The diffraction element reduces sparkle by filling gaps between sub-pixels in a pixelated display with orders of diffraction. A display system comprising the transparent substrate and a pixelated display is also provided.
Abstract:
An apparatus and method for determining and quantifying “sparkle”—the random noise that is generated when a pixelated image is viewed through a roughened surface of a transparent sample. The apparatus includes a pixelated source and an imaging system located in an optical path originating from the pixelated source, wherein a transparent sample may be placed in the optical path between the pixelated source and the optical system. The degree of sparkle is determined by obtaining an integrated image for the pixelated image; and calculating a standard deviation of the integrated pixel power. An objective level of sparkle can be defined by correlating the amount of sparkle provided by the apparatus with visual impressions.