Abstract:
According to an aspect, the liquid crystal display device includes: an expansion coefficient determining unit that determines an expansion coefficient of each of partial areas based on a signal level of the first, the second, and the third colors; a luminance level determining unit that determines a luminance level of each partial area based on the signal level; a signal processing unit that uses the expansion coefficient to expand the signal level; and a light source control unit that controls brightness of a light source based on the expansion coefficient and the luminance level. The light source can change the brightness of the partial areas individually. The light source control unit controls the light source such that the brightness of the light source in a partial area having a luminance level equal to or higher than a predetermined threshold is higher than the brightness based on the expansion coefficient.
Abstract:
A display device includes: an image display unit that includes an image display region; a plurality of light sources that are arranged corresponding to a plurality of partial regions included in the image display region and irradiate the partial regions with light; a light amount correction processing unit that detects that the partial regions are non-display regions in which no image is displayed, and corrects a light amount of the light sources based on a predetermined threshold when the partial regions adjacent to each other are continuous non-display regions; and a light source control unit that controls the light amount of the light sources.
Abstract:
According to an aspect, a display device includes: an image display panel; and a plurality of signal processing circuits that are responsible for respective regions in the image display panel, that convert an input value of an input HSV color space of an input signal to each of their own responsible regions into an extension value of an extended HSV color space to generate an output signal of the extension value for the image display panel. The signal processing circuits decide an extension coefficient αA for the image display panel in its entirety in a cooperative manner. The signal processing circuit, regarding its own responsible region, calculates an output signal of each of a first sub-pixel, a second sub-pixel, third sub-pixel, and a fourth sub-pixel.
Abstract:
According to an aspect, a display device includes a display unit including a plurality of pixels, a light source device that emits light that illuminates the display unit, and a controller that controls operation of the light source device. The controller does not lower luminance of the light for a second predetermined time or longer after the controller has raised the luminance of the light by a predetermined amount of luminance change or more within a first predetermined time.
Abstract:
According to an aspect, a display device includes a display panel comprising a plurality of pixels, a light guide plate, a light source configured to emit light from a lateral side of the light guide plate, a dimming panel, and a controller. The dimming panel comprises a plurality of dimming areas arranged in an emission direction of the light from the light source. The dimming areas are capable of individually changing transmittance of the light according to intensities of light required to display an image using the display panel. When adjacent two of the dimming areas differ in light transmittance from each other, the controller increases output gradation values of target pixels, the target pixels being located in a predetermined area extending from a boundary between the two dimming areas in one of the two dimming areas that has lower light transmittance.
Abstract:
According to one embodiment, a display device includes a polarization separation element which transmits first polarized light, and reflects second polarized light, a first optical modulation unit which displays a first image by using transmitted light, a second optical modulation unit which displays a second image by using reflected light, and a projector which projects the first image onto a first projection area of a projection plane, and projects the second image onto a second projection area different from the first projection area of the projection plane.
Abstract:
A display device includes an image display panel, a light source unit, and a signal processing unit. The tentative expansion coefficient calculating unit calculates a tentative expansion coefficient. The tentative index value calculating unit calculates a tentative index value serving as an index of the irradiation amount of light based on the tentative expansion coefficient. The low-saturation pixel detecting unit detects low-saturation pixels in a certain region on an image display surface. The light irradiation amount calculating unit calculates a comparative light irradiation amount based on a detection by the low-saturation pixel detecting unit, a display quality maintenance reference value at which the display quality of colors displayed by the low-saturation pixels is maintained, and an index value calculated based on the tentative index value and calculates, based on the comparative light irradiation amount, a light irradiation amount serving as the irradiation amount of light.
Abstract:
According to one embodiment, an illumination device includes a light source, clad, and a plurality of cores. The clad includes a first edge at a light source side, a second edge opposite to the first edge, and a plurality of grooves formed by a plurality of partitions extending in parallel to each other from the first edge to the second edge. The cores are accommodated in the grooves, and each core includes an incident surface on which light from the light source is incident and an exit surface exposed from the groove to emit the light incident on the incident surface.
Abstract:
According to one embodiment, a display device includes a polarization separation element which transmits first polarized light, and reflects second polarized light, a first optical modulation unit which displays a first image by using transmitted light, a second optical modulation unit which displays a second image by using reflected light, and a projector which projects the first image onto a first projection area of a projection plane, and projects the second image onto a second projection area different from the first projection area of the projection plane.
Abstract:
According to an aspect, a display apparatus includes: an image display panel including a plurality of pixels and displaying an image; and a signal processor generating a second signal by multiplying signal values for a plurality of sub-pixels making up each of the plurality of pixels by a gain, the signal values being included in a first signal that is an input signal of the image. The the signal processor calculates a luminance of each of the plurality of pixels based on the signal values of the sub-pixels included in the respective pixels. The signal processor increases the gain by which the signal values of the sub-pixels of the pixel having a luminance greater than a first luminance threshold are multiplied, in accordance with the luminance of the corresponding pixel.