Abstract:
A control device includes at least one communication interface for communicating first control data with a first plurality of communication devices that utilize the millimeter wave frequency band in accordance with a first protocol and further for communicating second control data with a second plurality of communication devices that utilize the millimeter wave frequency band in accordance with a second protocol. A resource controller allocates resources of the millimeter wave frequency band to the first plurality of communication devices and the second plurality of communication devices based on the first control data and the second control data.
Abstract:
A control device includes a first communication interface for communicating first control data with a first plurality of communication devices that utilize the millimeter wave frequency band in accordance with a first protocol, wherein the first communication interface utilizes the millimeter wave frequency band in accordance with the first protocol. A second communication interface communicates second control data with a second plurality of communication devices that utilize the millimeter wave frequency band in accordance with a second protocol, wherein the second communication interface utilizes the millimeter wave frequency band in accordance with the second protocol. A resource controller allocates resources of the millimeter wave frequency band to the first plurality of communication devices and the second plurality of communication devices based on the first control data and the second control data.
Abstract:
A frame format for high data throughput wireless local area network transmissions includes a first preamble segment, a second preamble segment, and a variable length data segment. The first preamble segment includes at least one training sequence and a high throughput channel indication. The second preamble segment includes a high data throughput training sequence when the high throughput channel indication is set and includes a null segment when the high data throughput training sequence is not set.
Abstract:
A wireless local area network (WLAN) transmitter includes a MAC module, a PLCP module, and a PMD module. The Medium Access Control (MAC) module is operably coupled to convert a MAC Service Data Unit (MSDU) into a MAC Protocol Data Unit (MPDU) in accordance with a WLAN protocol. The Physical Layer Convergence Procedure (PLCP) Module is operably coupled to convert the MPDU into a PLCP Protocol Data Unit (PPDU) in accordance with the WLAN protocol. The Physical Medium Dependent (PMD) module is operably coupled to convert the PPDU into a plurality of radio frequency (RF) signals in accordance with one of a plurality of operating modes of the WLAN protocol, wherein the plurality of operating modes includes multiple input and multiple output combinations.
Abstract:
A multimode wireless communication device includes a first circuit having a digital baseband processing module to convert outbound data into outbound digital baseband signals and to convert inbound digital baseband signals into inbound data, an analog to digital converter module to convert inbound analog baseband signals into the inbound digital baseband signals, and a digital to analog converter module to convert the outbound digital baseband signals into outbound analog baseband signals. A second circuit includes a first radio section and a third circuit includes a second radio section. A diversity antenna arrangement includes a first antenna, a second antenna, a first diplexer coupled to the first antenna, and a second diplexer coupled to the second antenna, that selectively couples the first radio section to one of the first antenna and the second antenna, and that selectively couples the second radio section to one of the first antenna and the second antenna.
Abstract:
A wireless transceiver includes a plurality of phased array antennas, that transmit an outbound RF signal containing outbound data to remote transceivers and that receives an inbound RF signal containing inbound data from the remote RF transceivers, wherein the plurality of phased array antennas are each configurable based on a control signal. An antenna configuration controller generates the control signal to configure the phased array antenna to hop among a plurality of radiation patterns based on a hopping sequence. An RF transceiver section generates the outbound RF signal based on the outbound data and that generates the inbound data based on the inbound RF signal. In one configuration, a switching section selectively couples a selected one of the plurality of phased array antennas to the RF transceiver section, based on the control signal. In figuration, the RF transceiver section includes an RF section for each antenna array.
Abstract:
A transceiver device for processing a frame in a wireless local area network, where the frame is one of several frame formats, which include a high throughput frame format. The transceiver device receives a frame having a training sequence, a signal field and a data payload, and processes the training sequence to detect which signal field length of a plurality of signal field lengths was used in the received frame. With the signal field length, the device processes the signal field based upon the detected signal field length to retrieve the data payload processing information.
Abstract:
Header encoding for SC and/or OFDM signaling using shortening, puncturing, and/or repetition in accordance with encoding header information within a frame to be transmitted via a communication channel employs different respective puncturing patterns as applied to different portions thereof. For example, a first puncturing pattern is applied to a first portion of the frame, and a second puncturing pattern is applied to a second portion of the frame (the second portion may be a repeated version of the first portion). Shortening (e.g., by padding 0-valued bits thereto) may be made to header information bits before they undergo encoding (e.g., in an LDPC encoder). One or both of the information bits and parity/redundancy bits output from the encoder undergo selective puncturing. Moreover, one or both of the information bits and parity/redundancy bits output from the encoder may be repeated/spread before undergoing selective puncturing to generate a header.
Abstract:
A method for generating a preamble of an Orthogonal Frequency Division Multiplexed (OFDM) data frame for a multiple input multiple output (MIMO) wireless communication includes determining at least one system condition preamble format parameter. When the system condition preamble format parameter satisfies a first preamble format parameter a preamble having a first preamble format is formed. When the system condition preamble format parameter satisfies a second preamble format parameter, a preamble having a second preamble format is formed. Further, when the system condition preamble format parameter satisfies a third preamble format parameter, a preamble having a third preamble format is formed. The first, second, and third preamble formats differ based upon their lengths, fields, and modulation formats of a high throughput signal field.
Abstract:
A general architecture scheme to perform channel estimation on orthogonal transmissions for any number of transmitting antennas present. Generally, the channel estimation is applicable for wireless communications in a MIMO system.