Abstract:
In accordance with one embodiment of the invention, a method is provided for integrating at least a portion of a watermark into at least a portion of a compressed image. The method of this embodiment includes encoding at least a portion of the watermark and compressing at least a portion of the image. The encoded watermark, or portion thereof, and the compressed image, or portion thereof, are combined. Of course, many other embodiments in accordance with the invention are included within the scope of the present invention.
Abstract:
An improved optical interconnect structure, system including the structure, and method of forming the structure and system are disclosed. The optical interconnect structure includes a waveguide and a reflective structure. Either the waveguide, the reflective structure, or both include a curved surface to facilitate focusing of light transmitted between the waveguide and an optoelectronic device.
Abstract:
In accordance with one embodiment of the invention, a method is provided for integrating at least a portion of a watermark into at least a portion of a compressed image. The method of this embodiment includes encoding at least a portion of the watermark and compressing at least a portion of the image. The encoded watermark, or portion thereof, and the compressed image, or portion thereof, are combined. Of course, many other embodiments in accordance with the invention are included within the scope of the present invention.
Abstract:
In accordance with one embodiment of the invention, a method is provided for integrating at least a portion of a watermark into at least a portion of a compressed image. The method of this embodiment includes encoding at least a portion of the watermark and compressing at least a portion of the image. The encoded watermark, or portion thereof, and the compressed image, or portion thereof, are combined. Of course, many other embodiments in accordance with the invention are included within the scope of the present invention.
Abstract:
A fiber optic connector system may include a elliptical reflector arranged to couple light from one optical fiber to another. The elliptical reflector has two foci, one of which may correspond to an end of a first optical fiber and the other of which may correspond to an end of another optical fiber. Thus, light emitted from one fiber may be coupled to another fiber.
Abstract:
A display screen may be formed with a moth-eye like array of elements of sufficiently small size to reduce glare from ambient light while passing outbound image light substantially unaffected. The screen may be used in direct view and projection displays.
Abstract:
An electro-optical device may be defined using metallic standoffs between a top plate and a substrate, such as a silicon substrate in a liquid crystal on silicon (LCOS) technology. In one embodiment, the metallic standoffs may be formed from a metal layer, such as metal four layer, above the metal layer used to form the metal pixel mirrors. In this way, relatively constant and uniform cell thicknesses may be achieved without significantly increasing the processing overhead.
Abstract:
An integrated circuit die may have a processor and a spatial light modulator formed in the same die. An opening may be provided in an interposer to allow light to reach the spatial light modulator. A plurality of bump bonds may space the interposer from the die region including the processor. Thus, a display may be formed in an integrated fashion with a processor.
Abstract:
A stereoscopic image sensor may be formed of a single image sensor having a pair of fields formed therein. The fields may be closer to one another than are a pair of left and right image collectors. The close spacing may be achieved by using an image redirector to redirect image information from the spaced apart collectors to the less spaced apart fields on the image sensor. In some embodiments of the present invention, by using a single imaging sensor, a more compact structure may be achieved which may be of lower cost and may enjoy reduced processing complexity. In addition, because a single sensor is utilized, in some embodiments of the present invention, the left and right images may be captured essentially identically.
Abstract:
In an MCM, an optical signal is conveyed by an optical waveguide disposed on a surface of a first substrate to a first optical coupler. This first optical coupler redirects the optical signal out of the plane of the optical waveguide. Then, an optical interposer guides the optical signal between the first optical coupler and a second optical coupler on a surface of a second substrate, thereby reducing spatial expansion of the optical signal between the optical couplers. Moreover, the second optical coupler redirects the optical signal into a plane of an optical waveguide disposed on a surface of the second substrate, which then conveys the optical signal.