Abstract:
A light emitting diode (LED) system implements a LED driver to drive a set of one or more LED strings. The LED driver includes a voltage source to provide an adjustable output voltage to a head end of each LED string of the set for a first duration and a second duration following the first duration. The LED driver further includes a feedback controller to control the voltage source to adjust the output voltage for the second duration based on a digital code value generated from a minimum tail voltage of one or more tail voltages of the set at a sample point of the first duration. The LED driver further includes a power controller to temporarily enable one or more components of the feedback controller for a sample period of the first duration, the sample period comprising the sample point.
Abstract:
A battery latching device is using for accommodating a battery and includes a housing, two opposite latching portions, a resisting portion, and a stopping member. The housing has a bottom wall and configured for accommodating the battery therein. The latching portions are formed on the bottom wall of the housing, and are configured for limiting the two opposite sides of the battery. The resisting portion are formed on the bottom wall of the housing and aligned with one end of the latching portions. The stopping member is retained to the bottom wall of the housing and aligned with another end of the latching portions. The two opposite ends of the battery are hold between the resisting portion and the stopping portion. When detaching the battery from the housing, the stopping member is capable of being pressed toward the bottom wall to release the battery.
Abstract:
A peak detection/digitization circuit includes a plurality of level detect units, each having a comparator and a flip-flop with a clock input responsive to the output of the comparator. For a detection period, each level detect unit configures a data output signal of the flip-flop to a first data state responsive to a start of the detection period. Further, each level detect unit is configured to enable the comparator responsive to the data output signal having the first data state or a second data state, respectively. While the comparator is enabled during the detection period, the level detect unit configures the data output signal of the flip-flop responsive to a comparison of an input signal to a corresponding reference voltage level by the comparator. The data output signals of the flip-flops of the level detect units at the end of the detection period are used to determine a digital value representative of a peak voltage level of the input signal.
Abstract:
An automatic assembly jig adapted for assembling an electronic component and a case is provided. The jig includes a working platform, a carrier, a pressure exerting device and at least a gear. The working platform has a guiding rail. The carrier is disposed on the working platform and is slidably mounted on the guiding rail. The pressure exerting device is disposed above the working platform. The gear is disposed on the working platform and connected with the carrier, so as to drive the carrier moving along the guiding rail to the position under the pressure exerting device.
Abstract:
A PWM generation module generates a PWM data signal used to control a light emitting diode (LED) driver for one or more strings of LEDs of a display device. The PWM data signal is synchronized with the frame boundaries of the video content being displayed. The PWM generation module can configure the PWM data signal such that a new PWM cycle is initiated at the start of each successive frame, and further whereby those PWM cycles that would be prematurely terminated at frame boundaries are instead driven at a constant reference level until the frame boundary. With this configuration, a substantially linear average light intensity can be achieved across frames, thereby reducing or eliminating display distortion that is often present in other PWM cycle synchronization techniques. The PWM generation module can use a self-learning process to make adjustments to the expected number of completeable PWM cycles per frame in response to dynamic changes in the frame rate, PWM frequency, or other related display parameters.
Abstract:
In one embodiment the present invention includes a system for identifying an unauthorized display of content. The system includes a preprocessor, an inserter, an observation device, and a subscriber information device. The preprocessor device preprocesses the content for subsequent insertion of semi-visible information. The inserter device inserts a semi-visible watermark into the content as having been preprocessed by the preprocessor device. The semi-visible watermark corresponds to a subscriber identifier. The observation device executes processing, including receiving an input from an observer that observes a display of the content that includes the semi-visible watermark. The input corresponds to the semi visible watermark. The processing further includes processing the input to generate an input result. The subscriber information device stores subscriber identifiers and identifies a particular subscriber by comparing the input result and the subscriber identifiers.
Abstract:
Power management in a light emitting diode (LED) system having a plurality of LED strings is disclosed. A voltage source provides an output voltage to drive the LED strings. An LED driver monitors the tail voltages of the active LED strings to identify the minimum, or lowest, tail voltage and adjusts the output voltage of the voltage source based on the lowest tail voltage. The LED driver can adjust the output voltage so as to maintain the lowest tail voltage at or near a predetermined threshold voltage so as to ensure that the output voltage is sufficient to properly drive each active LED string with a regulated current in view of pulse width modulation (PWM) performance requirements without excessive power consumption.
Abstract:
Techniques for dynamic headroom control in a light emitting diode (LED) system are disclosed. An output voltage is provided to drive a plurality of LED strings. A feedback controller monitors the tail voltages of the LED strings to identify the minimum tail voltage and adjusts the output voltage based on the lowest tail voltage. The LED strings grouped into subsets and the feedback controller is segmented such that, for a certain duration, a minimum tail voltage is determined for each subset. The minimum tail voltages of the subsets are used to determine the overall minimum tail voltage of the plurality of LED strings for the certain duration so as to control the output voltage in the following duration. The segments of the feedback controller can be implemented in separate integrated circuit (IC) packages, thereby facilitating adaptation to different numbers of LED strings by integrating the corresponding number of IC packages.
Abstract:
According to one exemplary embodiment, a voltage up-conversion circuit includes a modulated voltage generator circuit, where the modulated voltage generator circuit is configured to receive an input voltage and generate a modulated voltage, and where the modulated voltage generator circuit includes at least one transistor. The voltage up-conversion circuit further includes a switching circuit coupled to the modulated voltage generator circuit, where the switching circuit is configured to couple the modulated voltage to a load capacitor when the modulated voltage is at a high level and decouple the modulated voltage to the load capacitor when the modulated voltage is at a low level. In the voltage up-conversion circuit, the load capacitor reaches a voltage greater a breakdown voltage of the at least one transistor in the modulated voltage generator circuit. The breakdown voltage can be a reliability breakdown voltage.
Abstract:
A circuit can provide an approximately constant resistance value that is virtually independent of process and temperature variations. A current control circuit may use a device that tracks the changes in a corresponding device over process and temperature variations. As a result, the behavior of device may be used to help determine the control information provided to device in order to maintain an approximately constant resistance Rm over process and temperature variations. The approximately constant resistance Rm may be used to provide an approximately constant current ILED. A wide variety of applications, not just LED drivers, may benefit from the use of an approximately constant resistance and/or current.