Abstract:
Disclosed are a catalyst electrode for a fuel cell, a method for fabricating the catalyst electrode, and a fuel cell including the catalyst electrode. The presence of an ionomer-ionomer support composite in the catalyst electrode prevents the porous structure of the catalyst electrode from collapsing due to oxidation of a carbon support to avoid an increase in resistance to gas diffusion and can stably secure proton channels. The presence of carbon materials with high conductivity is effective in preventing the electrical conductivity of the electrode from deterioration resulting from the use of a metal oxide in the ionomer-ionomer support composite and is also effective in suppressing collapse of the porous structure of the electrode to prevent an increase in resistance to gas diffusion in the electrode. Based on these effects, the fuel cell exhibits excellent performance characteristics and prevents its performance from deteriorating during continuous operation.
Abstract:
The present disclosure discloses an asymmetric electrolyte membrane, a membrane electrode assembly including the same, a water electrolysis apparatus including the same and a method for manufacturing the same. More particularly, it discloses an asymmetric electrolyte membrane having a porous layer and a dense layer at the same time, a membrane electrode assembly including the same, a water electrolysis apparatus including the same and a method for manufacturing the same.
Abstract:
The present disclosure relates to a polymer electrolyte membrane for medium and high temperature, a preparation method thereof and a high-temperature polymer electrolyte membrane fuel cell including the same, more particularly to a technology of preparing a composite membrane including an inorganic phosphate nanofiber incorporated into a phosphoric acid-doped polybenzimidazole (PBI) polymer membrane by adding an inorganic precursor capable of forming a nanofiber in a phosphoric acid solution when preparing phosphoric acid-doped polybenzimidazole and using the same as a high-temperature polymer electrolyte membrane which is thermally stable even at high temperatures of 200-300° C. without degradation of phosphoric acid and has high ion conductivity.
Abstract:
Disclosed is a high temperature-type unitized regenerative fuel cell using water vapor, which exhibits high hydrogen (H2) production efficiency and superior power generation ability.
Abstract:
Disclosed is an electrochemical reaction cell enhancing a reduction reaction. The electrochemical reaction cell enhancing a reduction reaction comprises: a membrane electrode assembly including a polymer electrolytic membrane, a cathode formed by sequentially stacking a first gas diffusion layer and a first catalyst layer on one surface of the electrolytic membrane, and an anode formed by sequentially stacking a second catalyst layer and a second gas diffusion layer on the other surface of the electrolytic membrane; a first distribution plate stacked on the first catalyst layer to supply a reaction gas and a cathode electrolytic solution dissolved with the reaction gas to the first catalyst layer along separate channels; and a second distribution plate stacked on the second gas diffusion layer to supply an anode electrolytic solution to the second gas diffusion layer.
Abstract:
Provided is a catalyst for oxygen reduction reaction comprising an alloy comprising at least one selected from Pt, Pd and Ir supported on a carbon carrier functionalized with poly(N-isopropylacrylamide) (PNIPAM). The catalyst for oxygen reduction reaction has electronic ensemble effects by virtue of the carbon carrier functionalized with poly(N-isopropylacrylamide) (PNIPAM), and thus shows improved oxygen reduction activity and durability as compared to conventional catalysts supported on carbon.
Abstract:
Disclosed is a method for producing a core-shell structured electrocatalyst for a fuel cell. The method includes uniformly supporting nano-sized core particles on a support to obtain a core support, and selectively forming a shell layer only on the surface of the core particles of the core support. According to the method, the core and the shell layer can be formed without the need for a post-treatment process, such as chemical treatment and heat treatment. Further disclosed is a core-shell structured electrocatalyst for a fuel cell produced by the method. The core-shell structured electrocatalyst has a large amount of supported catalyst and exhibits superior catalytic activity and excellent electrochemical properties. Further disclosed is a fuel cell including the core-shell structured electrocatalyst.
Abstract:
A polybenzimidazole based polymer in which substituted or non-substituted benzyl groups are introduced to the two nitrogen atoms of benzimidazole ring. The benzimidazole ring is not decomposed by the attack of hydroxide ions but shows excellent alkali resistance, and thus maintains high ion conductivity. The polybenzimidazole based polymers are particularly useful for not only solid alkali exchange membrane fuel cells (SAEMFC) but also various industrial fields in which polybenzimidazole based polymers are used.
Abstract:
A polymer electrolyte membrane fuel cell is provided. The polymer electrolyte membrane fuel cell includes a phosphoric acid-doped polyimidazole electrolyte membrane and a complex catalyst. In the complex catalyst, an alloy or mixture of a metal and a chalcogen element is supported on a carbon carrier. The polymer electrolyte membrane fuel cell exhibits further improved long-term operation, power generation efficiency, and operational stability at high temperature. The complex catalyst can be produced by a simple method.
Abstract:
Provided are a ceria-based composition having an undoped or metal-doped ceria and an undoped or metal-doped bismuth oxide, wherein the undoped or metal-doped bismuth oxide is present in an amount equal to or more than about 10 wt % and less than about 50 wt % based on the total weight of the ceria-based composition, and at least one selected from the ceria and the bismuth oxide is metal-doped. The ceria-based composition may ensure high sintering density even at a temperature significantly lower than the known sintering temperature of about 1400° C., i.e., for example at a temperature of about 1000° C. or lower, and increase ion conductivity as well.