Abstract:
A hydrogen production device is provided. The device comprises: a dry reforming reaction unit for directly reacting methane and carbon dioxide in biogas to produce a synthesis gas containing hydrogen; and a gas shift unit for reacting carbon monoxide in the synthesis gas produced in the dry reforming reaction unit with water vapor to produce carbon dioxide and hydrogen, and for capturing the produced carbon dioxide.
Abstract:
Provided is a composite polymer electrolyte membrane for a fuel cell, including: a porous fluorinated polymer support; and a perfluorinated sulfonic acid polymer resin membrane which fills the inside of pores of the porous perfluorinated polymer support and covers an external surface of the porous fluorinated polymer support.
Abstract:
In a complex system including a desalination plant and a reverse electrodialysis equipment, a concentrated sea water discharged from the desalination plant having a salt concentration of about 50 to 75 g/L or about 50 to 60 g/L is provided as a high-concentration salt solution of the reverse electrodialysis equipment while low salinity water having a salt concentration of about 0.01 to 2 g/L, most preferably about 0.01 to 1 g/L, is provided as a low-concentration salt solution of the reverse electrodialysis equipment. Thereby, a recycling degree of a concentrated sea water may be enhanced as well as a power density produced by the complex system is significantly improved.
Abstract:
Provided are cardo copolybenzimidazoles, a gas separation membrane using the same and a method for preparing the same. More particularly, provided are cardo copolybenzimidazoles obtained by introducing cardo groups and aromatic ether groups to a polybenzimidazole backbone, a gas separation membrane having significantly improved oxygen permeability by using the same, and a method for preparing the same. The cardo copolybenzimidazoles have improved solubility as compared to the polybenzimidazole polymers according to the related art, show excellent mechanical properties while maintaining thermal stability so as to be formed into a film shape, and provide a gas separation membrane having significantly improved gas permeability, particularly, oxygen permeability.
Abstract:
The present specification discloses a membrane reactor comprising a reaction region; a permeate region; and a composite membrane disposed at a boundary of the reaction region and the permeate region, wherein the reaction region comprises a bed filled with a catalyst for dehydrogenation reaction, wherein the composite membrane comprises a support layer including a metal with a body-centered-cubic (BCC) crystal structure, and a catalyst layer including a palladium (Pd) or a palladium alloy formed onto the support layer, wherein ammonia (NH3) is supplied to the reaction region, the ammonia is converted into hydrogen (H2) by the dehydrogenation reaction in the presence of the catalyst for dehydrogenation reaction, and the hydrogen permeates the composite membrane and is emitted from the membrane reactor through the permeate region.
Abstract:
According to one embodiment of the present invention, there is provided a hydrogen extraction reactor, comprising a chamber including an inner space; a reaction unit which is provided to pass through the inside of the chamber and where an endothermic reaction for hydrogen extraction occurs; a heating unit which is provided to be spaced apart from the reaction unit inside the chamber and transfers heat to the inside of the chamber; and a heat transfer material which is provided between the reaction unit and the heating unit in the chamber, wherein the heat transfer material undergoes a phase transition between a gas phase and a liquid phase according to the entry and exit of heat from the heating unit or the reaction unit.
Abstract:
Provided are: a dry reforming catalyst, in which a noble metal (M) is doped in a nickel yttria stabilized zirconia complex (Ni/YSZ) and an alloy (M-Ni alloy) of the noble metal (M) and nickel is formed at Ni sites on a surface of the nickel yttria stabilized zircona (YSZ); a method for producing the dry reforming catalyst using the noble metal/glucose; and a method for performing dry reforming using the catalyst. The present invention can exhibit a significantly higher dry reforming activity as compared with Ni/YSZ catalysts. Furthermore, the present invention can have an improved long-term performance by suppressing or preventing the deterioration. Furthermore, the preparing method is useful in performing the alloying of noble metal with Ni at Ni sites on the Ni/YSZ surface and can simplify the preparing process, and thus is suitable in mass production.
Abstract:
The present invention provides a hydrogen generating apparatus and a hydrogen generating method, wherein the hydrogen generating apparatus generates hydrogen by dehydrating formic acid, and comprises: a reactor for containing water and a heterogeneous catalyst; a formic acid feeder for feeding formic acid into the reactor; and a moisture remover for removing moisture generated from the reactor.
Abstract:
Provided is an electrocatalyst for anion exchange membrane water electrolysis, including a carbonaceous material, and nickel electrodeposited on the carbonaceous material, wherein nickel is partially substituted with platinum and the substitution with platinum provides increased hydrogen evolution activity as compared to the same electrocatalyst before substitution with platinum. Also provided are a method for preparing the electrocatalyst and an anion exchange membrane water electrolyzer using the same. The nickel electrocatalyst coated with an ultralow loading amount of platinum for anion exchange membrane water electrolysis shows excellent hydrogen evolution activity and has a small thickness of catalyst, thereby providing high mass transfer and high catalyst availability. In addition, the electrocatalyst uses a particle-type electrode to facilitate emission of hydrogen bubbles generated during hydrogen evolution reaction and oxygen bubbles generated during oxygen evolution reaction, and requires low cost for preparation to provide high cost-efficiency.
Abstract:
Provided is a fluid pumping device, and more particularly, a fluid pumping device capable of being used in fuel cell systems and the like and spatially separating a fluid temporary storage unit through which a fluid at high temperature passes from a pump, thereby maintaining the durability of the pump, facilitating replacement and management, and achieving a reduction in weight.