Abstract:
A switching system is provided. The switching system includes electromechanical switching circuitry, such as a micro-electromechanical system switching circuitry. The system may further include solid state switching circuitry coupled in a parallel circuit with the electromechanical switching circuitry, and a controller coupled to the electromechanical switching circuitry and the solid state switching circuitry. The controller may be configured to perform selective switching of a load current between the electromechanical switching circuitry and the solid state switching circuitry in response to a load current condition appropriate to an operational capability of a respective one of the switching circuitries.
Abstract:
A MEMS switch includes a substrate, a movable actuator coupled to the substrate, a substrate contact, a substrate electrode, and a conductive stopper electrically coupled to the movable actuator and structured to prevent the movable actuator from contacting the substrate electrode while allowing the movable actuator to make contact with the substrate contact.
Abstract:
An electrical through-connection, or via, that passes through a substrate to a bus on a first surface of the substrate. The via may be configured with an interlock such that the electrically conductive core of the via is constrained to thermally expand towards the second surface, away from the bus, thus preventing damage to the bus. The interlock may be a local constriction or enlargement of the via near the first surface of the substrate. The via may be greater in length along the bus than a unit spacing of beams in a parallel microswitch array actuated in unison along the bus. The via may be narrower in width than in length, and may form a trapezoidal geometry that is larger at the second surface of the substrate than at the first surface.
Abstract:
Multi-level structures are formed in a semiconductor substrate by first forming a pattern of lines or structures of different widths. Width information on the pattern is decoded by processing steps into level information to form a MEMS structure. The pattern is etched to form structures having a first floor. The structures are oxidized until structures of thinner width are substantially fully oxidized. A portion of the oxide is then etched to expose the first floor. The first floor is then etched to form a second floor. The oxide is then optionally removed, leaving a multi-level structure. In one embodiment, high aspect ratio comb actuators are formed using the multi-level structure process.
Abstract:
The present invention comprises a method for over-current protection. The method comprising monitoring a load current value of a load current passing through a plurality of micro-electromechanical switching system devices, determining if the monitored load current value varies from a predetermined load current value, and generating a fault signal in the event that the monitored load current value varies from the predetermined load current value. The method also comprises diverting the load current from the plurality of micro-electromechanical switching system, devices in response to the fault signal and determining if the variance in the load current value was due to a true fault trip or a false nuisance trip.
Abstract:
The present invention provides a remote operable over-current protection apparatus. The apparatus includes control circuitry integrally arranged on a current path and a micro electromechanical system (MEMS) switch disposed on the current path, the MEMS switch responsive to the control circuitry to facilitate the interruption of an electrical current passing through the current path. The apparatus further includes a communication connection in signal connection with the control circuitry such that the control circuitry is responsive to a control signal on the communication connection to control a state of the MEMS switch.
Abstract:
A current control device is disclosed. The current control device includes control circuitry and a current path integrally arranged with the control circuitry. The current path includes a set of conduction interfaces and a micro electromechanical system (MEMS) switch disposed between the set of conduction interfaces. The set of conduction interfaces have geometry of a defined fuse terminal geometry and include a first interface disposed at one end of the current path and a second interface disposed at an opposite end of the current path. The MEMS switch is responsive to the control circuitry to facilitate the interruption of an electrical current passing through the current path.
Abstract:
A current control device is disclosed. The current control device includes control circuitry integrally arranged with a current path and at least one micro electromechanical system (MEMS) switch disposed in the current path. The current control device further includes a hybrid arcless limiting technology (HALT) circuit connected in parallel with the at least one MEMS switch facilitating arcless opening of the at least one MEMS switch, and a pulse assisted turn on (PATO) circuit connected in parallel with the at least one MEMS switch facilitating arcless closing of the at least one MEMS switch.
Abstract:
A gating voltage control system and method are provided for electrostatically actuating a micro-electromechanical systems (MEMS) device, e.g., a MEMS switch. The device may comprise an electrostatically responsive actuator movable through a gap for actuating the device to a respective actuating condition corresponding to one of a first actuating condition (e.g., a closed switching condition) and a second actuating condition (e.g., an open switching condition). The gating voltage control system may comprise a drive circuit electrically coupled to a gate terminal of the device to apply a gating voltage. The gating voltage control system may further comprise a controller electrically coupled to the drive circuit to control the gating voltage applied to the gating terminal in accordance with a gating voltage control sequence. The gating voltage control sequence may comprise a first interval for ramping up the gating voltage to a voltage level for producing an electrostatic force sufficient to accelerate the actuator through a portion of the gap to be traversed by the actuator to reach a respective actuating condition. The gating voltage control sequence may further comprise a second interval for ramping down the gating voltage to a level sufficient to reduce the electrostatic force acting on the movable actuator. This allows reducing the amount of force at which the actuator engages a contact for establishing the first actuating condition, or avoiding an overshoot position of the actuator while reaching the second actuating condition.
Abstract:
According to some embodiments, an apparatus includes a substrate that defines a plane. The apparatus also includes a first conducting plate that is substantially normal to the substrate and a second conducting plate that is (i) substantially normal to the substrate and (ii) deformable in response to a pressure.