Abstract:
A system and method are disclosed for controlling transmit power amplification in a wireless transmitting device. A processor receives data to determine whether a communication channel from a transmitting device to a receiving device is strong enough to support a target data transmit rate of the devices with a power amplifier either on or off. The processor controls a switching device between a data transmitter circuit and the transmitter's antenna based on the quality of the communication channel. In a first state, the switching device connects the data transmitter circuit to the power amplifier to increase the strength of the signal communicated to the antenna. In a second state, the switching device bypasses the power amplifier. The power amplifier is turned off when the switch is in the second state, thereby decreasing the power consumed by the transmitting device as it transmits data at the target data transmit rate.
Abstract:
An access point includes a detection module and a control module. The detection module determines whether a client station communicates with the access point during a predetermined period of time. The access point initially operates in a normal mode during the predetermined period of time. The control module transitions the access point from the normal mode to a power save mode based on whether the client station communicates with the access point during the predetermined period of time.
Abstract:
A wireless network device includes a signal receiving module that receives an RF signal, and a signal processing module that includes an automatic gain control (AGC) module and that generates control signals when a gain of the AGC module changes based on the RF signal. The network device includes a control module that selectively measures N time intervals between one of adjacent and non-adjacent control signals, wherein N is an integer greater than 1, and that selectively determines that the RF signal is a radar signal when the N time intervals are substantially equal.
Abstract:
A system for allocating bandwidth in a network includes a base station. The system also includes a plurality of stations in communication with the base station. During a measurement period, the base station monitors an amount of information communicated by each of the plurality of stations to determine bandwidth required by each of the plurality of stations. After the measurement period, the base station transmits a bandwidth allocation message to the plurality of stations allocating bandwidth to each of the plurality of stations for transmitting information during respective timeslots specified in the bandwidth allocation message.
Abstract:
The present specification describes techniques and apparatuses that enable power conservation in a wireless network. In some cases these techniques and apparatuses enable power conservation during a discover phase and for a wireless network subject to a government mandate requiring a device of the network to passively search for radar transmission prior to establishing communication with another device of the network.
Abstract:
Aspects of the disclosure provide a method for service discovery. The method includes receiving a first service advertisement by a first device. The first service advertisement includes at least a service of a second device. Further, the method include updating a service directory of the first device to include the service of the second device, and transmitting a second service advertisement by the first device. The second service advertisement includes at least the service of the second device, and can be used by a third device to effect use of the service of the second device.
Abstract:
In a peer-to-peer wireless communication network, a first device listens during an advertise state for polling signals from second devices on a first channel included in a plurality of channels. During the advertise state a response to a first polling signal transmitted by one of the second devices on the first channel is transmitted from the first device, if the first polling signal is received on the first channel during the advertise state. A second channel is selected at the first device from the plurality of channels for use during a search state of the first device. A second polling signal is transmitted with the first device, on the selected second channel during the search state. The first device listens during the search state for polling response signals on the selected second channel, the polling response signals responsive to the second polling signal.
Abstract:
A system and method are disclosed for controlling transmit power amplification in a wireless transmitting device. A processor receives data to determine whether a communication channel from a transmitting device to a receiving device is strong enough to support a target data transmit rate of the devices with a power amplifier either on or off. The processor controls a switching device between a data transmitter circuit and the transmitter's antenna based on the quality of the communication channel. In a first state, the switching device connects the data transmitter circuit to the power amplifier to increase the strength of the signal communicated to the antenna. In a second state, the switching device bypasses the power amplifier. The power amplifier is turned off when the switch is in the second state, thereby decreasing the power consumed by the transmitting device as it transmits data at the target data transmit rate.
Abstract:
Aspects of the disclosure provide a method for sharing power load in a network. The method includes identifying a first device to serve as an AP of the network in a next time interval, providing network information from a second device that presently serves as the AP to the first device. When the first device starts to serve as the AP of the network, the second device can be configured to enter into a power save state in order to reduce power consumption by the second device in the next time interval.
Abstract:
A system and method are disclosed for controlling transmit power amplification in a wireless transmitting device. A processor receives data to determine whether a communication channel from a transmitting device to a receiving device is strong enough to support a target data transmit rate of the devices with a power amplifier either on or off. The processor controls a switching device between a data transmitter circuit and the transmitter's antenna based on the quality of the communication channel. In a first state, the switching device connects the data transmitter circuit to the power amplifier to increase the strength of the signal communicated to the antenna. In a second state, the switching device bypasses the power amplifier. The power amplifier is turned off when the switch is in the second state, thereby decreasing the power consumed by the transmitting device as it transmits data at the target data transmit rate.