Abstract:
Provided are a display device and a method of driving the same. The display device includes: a touch sensitive element having an electroactive layer and a plurality of electrodes disposed on at least one of a top surface and a bottom surface of the electroactive layer; a display panel disposed under the touch sensitive element; and a touch sensor disposed under the touch sensitive element and having a plurality of touch electrodes, and each of the plurality of electrodes of the touch sensitive element overlaps with one touch electrode from among the plurality of touch electrodes in a one to one correspondence.
Abstract:
Provided is a multilayer actuator and a display device comprising the same with improved driving displacement that includes, for example, a plurality of electroactive layers, wherein the electroactive layers comprise a ferroelectric polymer, and polarization directions of all electroactive layers are substantially the same.
Abstract:
Provided is a multilayer transformable device with enhanced driving displacement and a display device including the same. The multilayer transformable device, for example, includes a plurality of unit transformable devices, each of the unit transformable devices that includes a lower electrode, an upper electrode, and a transformable layer including an electro-active polymer (EAP) and a sub-transformable layer disposed between the plurality of unit transformable devices, the sub-transformable layer including a sub-EAP different from the EAP.
Abstract:
A vibration device according to one or more example aspects of the present disclosure may comprise a first electrode layer, a second electrode layer, and a piezoelectric layer between the first electrode layer and the second electrode layer. The piezoelectric layer may include a plurality of grooves.
Abstract:
A piezoelectric material composition includes a first material, and a second material in the first material, wherein the piezoelectric material composition represented by (Equation 1) 0.96(NaaK1-a)(Nbb(Sb1-b))O3-(0.04-x)MZrO3-x(BicAg1-c)ZrO3+d mol % E, where 1, M denotes strontium (Sr), barium (Ba), or calcium (Ca), E denotes the second material, 0.40≤a≤0.60, 0.90≤b≤0.98, 0.30≤c≤0.70, 0.00
Abstract:
A display apparatus includes a display panel displaying an image and a vibration generating device disposed on a rear surface of the display panel to vibrate the display panel. The vibration generating device includes a piezoelectric structure including a first region and a second region, the first region has a vibration characteristic of a first frequency, and the second region has a vibration characteristic of a second frequency which differs from the first frequency.
Abstract:
The present disclosure relates to a flexible vibration film and a display apparatus having the same. A flexible vibration film includes: a vibration layer; a first electrode layer disposed on a bottom surface of the vibration layer; and a second electrode layer disposed on a top surface of the vibration layer, wherein the vibration layer includes: a first vibration unit having a first vibration characteristics; a second vibration unit having a second vibration characteristics; and a flexible insulating part disposed between the first vibration unit and the second vibration unit, and wherein the first electrode layer includes: a first part corresponding to the first vibration unit; and a second part corresponding to the second vibration unit.
Abstract:
A vibration device enabling a large area and a display apparatus including the vibration device are provided. The vibration device may be configured to include a vibration array including a plurality of vibration modules which are spaced apart from one another by a first interval of less than 3 cm in a first direction.
Abstract:
A flexible vibration module is disclosed. The flexible vibration module includes a piezoelectric composite layer, including: a plurality of piezoelectric portions each having a piezoelectric characteristic, where at least two of the plurality of piezoelectric portions have different sizes; and a flexible portion between the plurality of piezoelectric portions.
Abstract:
Compositions are disclosed that comprise a piezoelectric material according to Chemical Formula 1: (1−y)(NaaK1-a)(Nb1-x,Sbx)-ySrZrO3+n mol % CuO, wherein 0.01≤y≤0.10, 0.4≤a≤0.6, 0≤x≤0.06, and 0.5≤n≤1.5. The compositions can further comprise a first material, and a second material surrounded by the first material. A piezoelectric device is also described, which includes a piezoelectric device layer including a composition of Chemical Formula 1, and having a first material layer and a second material layer surrounded by the first material layer; a first electrode part disposed on a first surface of the piezoelectric device layer; and a second electrode part disposed on a second surface facing the first surface.