摘要:
The present invention is generally related to a novel micromachining thermal mass flow sensor and, more particularly, to a device incorporated with high strength and robust characteristics, which therefore is capable of operating under harsh environments. The new disclosed sensor is made of essential material which can provide robust physical structure and superior thermal properties to support the flow measuring operation. The invented thermal mass flow sensor is featuring with the advantages of micro-fabricated devices in terms of compact size, low power consumption, high accuracy and repeatability, wide dynamic range and easiness for mass production, which could avoid the drawbacks of fragility and vulnerability.
摘要:
A device with micromachined (a.k.a. MEMS, Micro Electro Mechanical Systems) silicon sensor to measure gas or liquid concentration in a binary mixture formality is disclosed in the present invention. A process for fabricating the said MEMS silicon concentration sensor, which thereby can greatly reduce the sensor fabrication cost by a batch production, is revealed as well. This MEMS process can mass-produce the sensors on silicon substrate in the ways of small size, low power, and high reliability. In addition to the gas or liquid concentration measurement, the present invention further discloses that the said sensor can also readily measure gas or liquid mass flow rate while record the concentration data, which is not viable by other related working principle.
摘要:
An integrated mass flow sensor is manufactured by a process of carrying out a micro-machining process on an N or P-type silicon substrate with orientation . This mass flow sensor comprises a central thin-film heater and a pair of thin-film heat sensing elements, and a thermally isolated membrane for supporting the heater and the sensors out of contact with the substrate base. The mass flow sensor is arranged for integration on a same silicon substrate to form a one-dimensional or two-dimensional array in order to expand the dynamic measurement range. For each sensor, the thermally isolated membrane is formed by a process that includes a step of first depositing dielectric thin-film layers over the substrate and then performing a backside etching process on a bulk silicon with TMAH or KOH or carrying out a dry plasma etch until the bottom dielectric thin-film layer is exposed. Before backside etching the bulk silicon, rectangular openings are formed on the dielectric thin-film layers by applying a plasma etching to separate the area of heater and sensing elements from the rest of the membrane. This mass flow sensor is operated with two sets of circuits, a first circuit for measuring a flow rate in a first range of flow rates and a second circuit for measuring a flow rate in a second range of flow rates, to significantly increase range of flow rate measurements, while maintains a high degree of measurement accuracy.
摘要:
An electronic utility gas meter using MEMS thermal time-of-flight flow sensor to meter gas custody transfer mass flowrate and an additional MEMS gas sensor to measure the combustion gas composition for the correlations to the acquisition of gas high heat value simultaneously is disclosed in the present invention. The meter is designed for the applications in the city utility gas consumption in compliance with the current tariff while metering the true thermal value of the delivered gases for future upgrades. Data safety, remote data communication, and other features with state-of-the-art electronics are also included in the design.
摘要:
The design of a vacuum gauge utilizing a micromachined silicon vacuum sensor to measure the extended vacuum range from ambient to ultrahigh vacuum by registering the gas thermal properties at each vacuum range is disclosed in the present invention. This single device is capable of measuring the pressure range from ambient and above to ultrahigh vacuum. This device applies to all types of vacuum measurement where no medium attack silicon is present. The disclosed vacuum gauge operates with thermistors and thermopile on a membrane of the thermal isolation diaphragm structure with a heat isolation cavity underneath.
摘要:
An electronic utility gas meter using MEMS thermal mass flow sensor to meter gas custody transfer and MEMS gas thermal property sensor to compensate the metering values due to gas composition variations is disclosed in the present invention. The meter is designed to have a MEMS mass flow sensor to meter the city utility gas consumption independent of environmental temperature and pressure while a MEMS gas thermal property or dual gas thermal property sensors to compensate the tariff due to the gas composition variations for compliance with the current regulation requirements of tariff and remove the major concerns for the wide deployment of the thermal mass MEMS utility gas meters.
摘要:
An electronic utility gas meter using MEMS thermal time-of-flight flow sensor to meter gas custody transfer mass flowrate and an additional MEMS gas sensor to measure the combustion gas composition for the correlations to the acquisition of gas high heat value simultaneously is disclosed in the present invention. The meter is designed for the applications in the city utility gas consumption in compliance with the current tariff while metering the true thermal value of the delivered gases for future upgrades. Data safety, remote data communication, and other features with state-of-the-art electronics are also included in the design.
摘要:
The design and structure of a fully automatic oxygen therapy apparatus is exhibited in this disclosure. The apparatus integrates a MEMS mass flow meter, an oximeter, a proportional valve and a smart liquid bottle. The control unit of the apparatus is embedded with a wireless communication device and powered by a battery pack. This apparatus is designed to replace the mechanical oxygen rotameter used in today's hospital or homecare oxygen therapy applications. With a set recipe or parameters locally or remotely, the disclosed apparatus can perform a fully automatic oxygen therapy for recovering the blood oxygen level of patient, without the frequent attention of the therapy administrator, and especially it significantly reduces the possibility of cross infection to the administrator during the attendance of the oxygen therapy process. The therapy process data are relayed to local users as well as a designated cloud or data center. This disclosure will be beneficial for both medical staffs and patient.
摘要:
The present invention disclosed a micromachined composite silicon flow sensor that is comprised of calorimetric flow sensing elements, time-of-flight sensing elements as well as independent temperature sensing element on a silicon-on-insulator device where the device layer is used for the thermal isolation membrane. The disclosed composite silicon flow sensor can measure mass flowrate, volumetric flowrate and flow medium temperature simultaneously, from which a full spectrum of flow parameters including flow pressure can be obtained. The sensor can be further used to alert any changes in physical properties of flow medium during operation. The disclosed manufacture process details the micromachining process of making such a sensor.
摘要:
The design and assembly of a smart device constituent of a micro-machined (a.k.a. MEMS, Micro Electro Mechanical Systems) mass flow sensor and an electrically controllable valve for applications in safety enhancement and intermit connectivity for residential or commercial gas range is disclosed in the present invention. The said smart device detects the gas flow at the unattended situations and sends information to the destined mobile devices of the users via the network such that it enables the users to remotely execute actions of either shutting off the gas supply or call for relevant party's immediate attention. The said smart device shall also automatically shut off the gas supply should the transmitted signal to users failed to send feedback signal such that it can prevent the safety incidents due to leakage or overheating or even fires. The capability of the MEMS mass flow sensor shall also provide the thermal value measurement of the supplied gases and enable the user to program the gas range for making complete tasks of cooking substances in the unattended situation.