Abstract:
Disclosed are various embodiments for a motor/generator comprising: a rotor adapted to rotate about a longitudinal axis, the rotor comprising a first partial toroidal magnetic cylinder defining a semi-circular tunnel, wherein the plurality of magnets forming the first partial toroidal magnetic cylinder have substantially all like poles facing inward toward the semi-circular tunnel, the semi-circular tunnel having an entrance and an exit forming an open throat defined by a space between the entrance and the exit, and a stator positioned about the longitudinal axis within a rotational path of the rotor.
Abstract:
Disclosed are various embodiments for a new and improved electrical motor/generator, specifically a motor/generator comprising: a plurality of coils radially positioned about a coil assembly, a plurality of magnetic tunnels forming a relative rotational path for the coil assembly, wherein the all of plurality of magnets forming each magnetic tunnel have like poles facing inward toward the interior of the magnetic tunnel or facing outward away from the interior of the magnetic tunnel such that each magnetic field of any magnetic tunnel is of an opposite polarity to the magnetic field of an adjacent magnetic tunnel.
Abstract:
Disclosed are various embodiments for a motor/generator comprising: a rotor adapted to rotate about a longitudinal axis, the rotor comprising a first partial toroidal magnetic cylinder defining a semi-circular tunnel, wherein the plurality of magnets forming the first partial toroidal magnetic cylinder have substantially all like poles facing inward toward the semi-circular tunnel, the semi-circular tunnel having an entrance and an exit forming an open throat defined by a space between the entrance and the exit, and a stator positioned about the longitudinal axis within a rotational path of the rotor.
Abstract:
This disclosure relates in general to a new and improved method for producing electric energy or mechanical power, and in particular to an improved system and method for producing rotary motion from a electro-magnetic motor or generating electrical power from a rotary motion input by concentrating magnetic forces due to electromagnetism or geometric configurations.
Abstract:
Disclosed are various embodiments for electric machines with fractional concentrated winding having a coil winding assembly with at least a first and a second laminated stator pole segment, each of the laminated stator pole segments having the shape of a tapered H and mechanically joined together to form a ring-like stator core with a plurality of circumferentially distributed stator poles and slots for coils, the first and second stator pole segments comprising a plurality of laminated stator pole segment pieces oriented in a radial direction and coupled together to form a unified stator pole segment with a 3D flux path, and wherein the laminations of each of the laminated stator pole segment pieces has the shape of a U.
Abstract:
Disclosed are various embodiments for Torque Tunnel Halbach Array electric machines having a rotor comprising a plurality of rotor assemblies configured to form a magnetic torque tunnel having at least a first magnetic pole tunnel segment and a second magnetic pole tunnel segment, each of the rotor assemblies having a plurality of flux shaping Halbach Arrays configured to focus the Flux Density Distribution in the magnetic torque tunnel and a stator having a plurality of coils configured to form a coil winding assembly, the coil winding assembly positioned within the magnetic torque tunnel, such that at least one of the plurality of coils is surrounded by the first magnetic pole tunnel segment or the second magnetic pole tunnel segment, alternatively the rotor may be the coil winding assembly and the stator may be the magnetic torque tunnel.
Abstract:
Disclosed are various embodiments for Torque Tunnel Halbach Array electric machines having a rotor comprising a plurality of rotor assemblies configured to form a magnetic torque tunnel having at least a first magnetic pole tunnel segment and a second magnetic pole tunnel segment, each of the rotor assemblies having a plurality of flux shaping Halbach Arrays configured to focus the Flux Density Distribution in the magnetic torque tunnel and a stator having a plurality of coils configured to form a coil winding assembly, the coil winding assembly positioned within the magnetic torque tunnel, such that at least one of the plurality of coils is surrounded by the first magnetic pole tunnel segment or the second magnetic pole tunnel segment, alternatively the rotor may be the coil winding assembly and the stator may be the magnetic torque tunnel.
Abstract:
Disclosed are various embodiments for a motor/generator where the stator is a coil assembly and the rotor is a magnetic toroidal cylindrical tunnel or where the rotor is a coil assembly and the stator is a magnetic toroidal cylindrical tunnel, and where the magnetic toroidal cylindrical tunnel comprises magnets having a NNSS or SSNN pole configuration.
Abstract:
Disclosed are various embodiments for Torque Tunnel Halbach Array electric machines having a rotor comprising a plurality of rotor assemblies configured to form a magnetic torque tunnel having at least a first magnetic pole tunnel segment and a second magnetic pole tunnel segment, each of the rotor assemblies having a plurality of flux shaping Halbach Arrays configured to focus the Flux Density Distribution in the magnetic torque tunnel and a stator having a plurality of coils configured to form a coil winding assembly, the coil winding assembly positioned within the magnetic torque tunnel, such that at least one of the plurality of coils is surrounded by the first magnetic pole tunnel segment or the second magnetic pole tunnel segment, alternatively the rotor may be the coil winding assembly and the stator may be the magnetic torque tunnel.
Abstract:
Disclosed are various embodiments for a motor/generator where the stator is a coil assembly and the rotor is a magnetic toroidal cylindrical tunnel or where the rotor is a coil assembly and the stator is a magnetic toroidal cylindrical tunnel, and where the magnetic toroidal cylindrical tunnel comprises magnets having a NNSS or SSNN pole configuration.