Abstract:
A method of supporting group communication over LTE MBMS is provided. A UE first establishes a unicast Evolved Packet Service (EPS) bearer in an LTE network for group communication. The UE belongs to a communication group having a communication group ID. The UE receives access information from the network for monitoring downlink (DL) multicast traffic of the DL group communication based on a multicast decision. The UE is then ready for monitoring a multicast Multimedia Broadcast Multicast Service (MBMS) bearer for receiving the DL multicast traffic. The multicast MBMS bearer is associated with a Temporary Mobile Group Identifier (TMGI), and wherein the TMGI is associated with the communication group ID. The UE later enters RRC_IDLE mode and releases a radio bearer of the unicast EPS bearer while keep monitoring the multicast MBMS bearer for the DL multicast traffic.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a first wireless device. The first wireless device receives, from a base station, a configuration of first reference signals on a first time-frequency resource. The first wireless device measures the first reference signals received from the base station to obtain first measurements for a direct path between the base station and the first wireless device. The first wireless device obtains second measurements for an indirect path between the base station and the first wireless device via a second wireless device. The first wireless device selects a communication path from the direct path and the indirect path based at least in part on the first measurements and the second measurements.
Abstract:
Method and user equipment (UE) are provided for CSI compression based on multi-dimensional MIO RF signature. In one novel aspect, the UE receives CSI-RS, estimates a basis matrix and a coefficient matrix of a downlink channel matrix based on the at least one CSI-RS, wherein the basis matrix is an N-dimensional non-orthogonal matrix, with N greater than two, and the coefficient matrix is a linear combination coefficient matrix for the basis matrix, and transmits to the network at least one feedback comprising feeding back the basis matrix in a first periodicity and feeding back the coefficient matrix in a second periodicity. In one embodiment, the UE compresses the basis matrix and the coefficient matrix to a feedback basis matrix and a feedback coefficient matrix before transmitting.
Abstract:
Methods are provided to support path selection for a remote UE configured with multipath in a UE-to-network relay. A direct path or an indirect path is set as the primary path. Side information of the indirect path is considered for path selection. A remote UE can select a suitable path by utilizing the side information for path selection to check whether an indirect path can fulfill the QoS requirement of arriving UL traffic. In a network-controlled path selection, the base station can request UE to send side information. The base station indicates the selected path or the change of primary path to the UE via explicit signaling. Each path is identified by a path ID. The path indication is in a granularity of per radio bearer, per QoS flow, per logical channel, or per logical channel group.
Abstract:
Method and UE are provided for scheduling for CCS from SCell to PCell. In particular, a UE can connect to a PCell and a SCell. A CCS is configured between the PCell and the SCell. According to a UE type, the UE can monitor PDCCHs from both the PCell and the SCell in a same slot when the UE is a first type UE, or ignore the PDCCHs from the SCell in the same slot when the UE is a second type UE.
Abstract:
A UE determines (a) resources of a PDCCH indicating a PDSCH that contains a random access message or indicating an uplink grant for transmitting a random access message and (b) resources of a second PDCCH. The UE further determines, in a time domain, (a) that the first PDCCH overlaps with the second PDCCH, (b) that the first PDCCH overlaps with a second PDSCH that contains system data or user data and indicated by the second PDCCH, (c) that the first PDSCH overlaps with the second PDCCH, or (d) that the first PDSCH overlaps with the second PDSCH. The UE then determines that monitoring the second PDCCH is an unexpected operation.
Abstract:
Aspects of the disclosure provide a user equipment (UE). The UE receives configuration information of multiple transmission configuration indication (TCI) states. The UE receives one or more activation commands that associate a first subset of the TCI states with one or more codepoints of a TCI field and a second subset of the TCI states with the one or more codepoints of the TCI field. The UE receives a codepoint associated with a first TCI state in the first subset of the TCI states and a second TCI state in the second subset of the TCI states. The UE determines at least one first quasi co-located (QCL) assumption according to the first TCI state and at least one second QCL assumption according to the second TCI state. The UE receives a downlink transmission based on the at least one first QCL assumption and the at least one second QCL assumption.
Abstract:
A method of default uplink beam determination after a beam failure recovery (BFR) procedure in a beamforming system is proposed. For uplink (UL) transmission, the BS provides physical uplink control channel (PUCCH) resource configuration to UE. The configuration includes spatial relation information that indicates the spatial filter to be used by UE for the corresponding PUCCCH transmission. After BFR procedure is completed and before the first spatial relation information indication for a PUCCH resource is received by UE, a default UE TX beam for the PUCCH resource can be determined based on the UE TX beam used during the BFR procedure, e.g., the UE TX beam used to transmit a beam failure recovery request (BFRQ) during the BFR procedure.
Abstract:
A User Equipment (UE) including a wireless transceiver and a controller is provided. The wireless transceiver performs wireless transmission and reception to and from a cellular station. The controller uses one or more first preambles within a PRACH time-frequency resource to perform a synchronous transmission on the PRACH to the cellular station via the wireless transceiver, or uses one or more second preambles within the PRACH time-frequency resource to perform an asynchronous transmission or a synchronous transmission on the PRACH to the cellular station via the wireless transceiver.
Abstract:
In one novel aspect, configurations for PDCCH transmission and reception with multiple transmission points are provided. The UE configures a PDCCH associated with a CORSET comprising multiple CCEs, partitions the CORSET into multiple TCI-state sets, wherein each TCI state set includes multiple CCE groups associated with corresponding TCI-state, which corresponds to a source TRP, activates one TCI state set, and receives DCI via the PDCCH, wherein the PDCCH is transmitted from at least the first source TRP and the second source TRP, and wherein each source TRP transmits corresponding portion of DCI data mapping to the corresponding first and second CCE group. The CORSET is partitioned in FDM or TDM way. In another novel aspect, a first and a second PDCCH associated with a first and a second TRP are configured for repetition transmission. The second PDCCH configuration is dependent upon the first PDCCH configuration.