摘要:
Hydrogen ions are implanted to a surface (main surface) of the single crystal Si substrate 10 to form the hydrogen ion implanted layer (ion-implanted damage layer) 11. As a result of the hydrogen ion implantation, the hydrogen ion implanted boundary 12 is formed. The single crystal Si substrate 10 is bonded to the quartz substrate 20 having a carbon concentration of 100 ppm or higher, and an external shock is applied near the ion-implanted damage layer 11 to delaminate the Si crystal film along the hydrogen ion implanted boundary 12 of the single crystal Si substrate 10 out of the bonded substrate. Then, the surface of the resultant silicon thin film 13 is polished to remove a damaged portion, so that an SOQ substrate can be fabricated. There can be provided an SOQ substrate highly adaptable to a semiconductor device manufacturing process.
摘要:
There is disclosed a method for producing a single crystal silicon solar cell comprising the steps of: implanting hydrogen ions or rare gas ions into a single crystal silicon substrate through an ion implanting surface thereof to form an ion implanted layer in the single crystal silicon substrate; closely contacting the single crystal silicon substrate and a transparent insulator substrate with each other via a transparent adhesive while using the ion implanting surface as a bonding surface; curing the transparent adhesive; applying an impact to the ion implanted layer to mechanically delaminate the single crystal silicon substrate thereat to leave a single crystal silicon layer; forming a plurality of diffusion regions having a second conductivity type at the delaminated surface side of the single crystal silicon layer, in a manner that a plurality of first conductivity-type regions and a plurality of second conductivity-type regions are present at the delaminated surface of the single crystal silicon layer; forming pluralities of individual electrodes on the pluralities of first and second conductivity-type regions of the single crystal silicon layer, respectively; and forming collector electrodes for the individual electrodes, respectively. There can be provided a single crystal silicon solar cell as a see-through type solar cell, including a thin-film light conversion layer made of single crystal silicon having a higher crystallinity.
摘要:
Hydrogen ions are implanted to a surface (main surface) of the single crystal Si substrate 10 at a dosage of 1.5×1017 atoms/cm2 or higher to form the hydrogen ion implanted layer (ion-implanted damage layer) 11. As a result of the hydrogen ion implantation, the hydrogen ion implanted boundary 12 is formed. The single crystal Si substrate 10 and the low melting glass substrate 20 are bonded together. The bonded substrate is heated at relatively low temperature, 120° C. or higher and 250° C. or lower (below a melting point of the support substrate). Further, an external shock is applied to delaminate the Si crystal film along the hydrogen ion implanted boundary 12 of the single crystal Si substrate 10 out of the heat-treated bonded substrate. Then, the surface of the resultant silicon thin film 13 is polished to remove a damaged portion, so that a semiconductor substrate can be fabricated. There can be provided a semiconductor substrate in which a high-quality silicon thin film is transferred onto a substrate made of a low melting point material.
摘要翻译:将氢离子以1.5×10 17原子/ cm 2或更高的剂量注入单晶Si衬底10的表面(主表面),以形成氢离子注入层(离子注入损伤层)11。 氢离子注入,形成氢离子注入边界12。 单晶Si衬底10和低熔点玻璃衬底20结合在一起。 键合衬底在相对较低的温度,120℃或更高和250℃或更低(低于支撑衬底的熔点)下加热。 此外,施加外部冲击以沿着经热处理的键合衬底的单晶Si衬底10的氢离子注入边界12将Si晶体膜分层。 然后,对所得的硅薄膜13的表面进行抛光以去除损坏部分,从而可以制造半导体衬底。 可以提供一种半导体衬底,其中将高质量的硅薄膜转移到由低熔点材料制成的衬底上。
摘要:
A method for producing a single crystal silicon solar cell including the steps of: implanting ions into a single crystal silicon substrate through an ion implanting surface thereof; closely contacting the single crystal silicon substrate and a transparent insulator substrate with each other via a transparent adhesive while using the ion implanting surface as a bonding surface; curing the transparent adhesive; applying an impact to the ion implanted layer to mechanically delaminate the single crystal silicon substrate; forming a plurality of diffusion regions having a second conductivity type at the delaminated surface side of the single crystal silicon layer, such that a plurality of first conductivity-type regions and second conductivity-type regions are present at the delaminated surface of the single crystal silicon layer; forming pluralities of individual electrodes on the pluralities of first and second conductivity-type regions, respectively; and forming collector electrodes for the individual electrodes, respectively.
摘要:
A method for producing a single crystal silicon solar cell including the steps of: implanting ions into a single crystal silicon substrate; conducting a surface activating treatment for at least one of: the ion implanting surface of the single crystal silicon substrate, and a surface of the transparent insulator substrate; bonding the ion implanting surface of the single crystal silicon substrate and the transparent insulator substrate to each other, such that the surface(s) subjected to the surface activating treatment is/are used as a bonding surface(s); applying an impact to the ion implanted layer; and forming a plurality of diffusion regions having a second conductivity type at the delaminated surface side of the single crystal silicon layer, such that a plurality of first conductivity-type regions and second conductivity-type regions are present at the delaminated surface of the single crystal silicon layer.
摘要:
There is disclosed a single crystal silicon solar cell includes the steps of: implanting hydrogen ions or rare gas ions to a single crystal silicon substrate; performing surface activation on at least one of an ion-implanted surface of the single crystal silicon substrate and a surface of a transparent insulator substrate; bonding the ion-implanted surface of the single crystal silicon substrate and the transparent insulator substrate with the surface-activated surface being set as a bonding surface; applying an impact onto the ion implanted layer to mechanically delaminate the single crystal silicon substrate to form a single crystal silicon layer; forming a plurality of diffusion regions having a second conductivity type on the delaminated plane side of the single crystal silicon layer; forming a plurality of first conductivity type regions and a plurality of second conductivity type regions on the delaminated plane of the single crystal silicon layer; and forming a light reflection film that covers the plurality of first conductivity type regions and the plurality of second conductivity type regions. There can be provided an optical confinement type single crystal silicon solar cell where a thin-film light conversion layer is made of high-crystallinity single crystal silicon.
摘要:
A method for producing a single crystal silicon solar cell including the steps of: implanting ions into a single crystal silicon substrate through an ion implanting surface thereof to form an ion implanted layer in the single crystal silicon substrate; forming a transparent electroconductive film on a surface of a transparent insulator substrate; conducting a surface activating treatment for the ion implanting surface of the single crystal silicon substrate and/or a surface of the transparent electroconductive film on the transparent insulator substrate; bonding the ion implanting surface of the single crystal silicon substrate and the surface of the transparent electroconductive film on the transparent insulator substrate to each other; applying an impact to the ion implanted layer; and forming a p-n junction in the single crystal silicon layer.
摘要:
A silicon layer having a conductivity type opposite to that of a bulk is provided on the surface of a silicon substrate and hydrogen ions are implanted to a predetermined depth into the surface region of the silicon substrate through the silicon layer to form a hydrogen ion-implanted layer. Then, an n-type germanium-based crystal layer whose conductivity type is opposite to that of the silicon layer and a p-type germanium-based crystal layer whose conductivity type is opposite to that of the germanium-based crystal layer are successively vapor-phase grown to provide a germanium-based crystal. The surface of the germanium-based crystal layer and the surface of the supporting substrate are bonded together. In this state, impact is applied externally to separate a silicon crystal from the silicon substrate along the hydrogen ion-implanted layer, thereby transferring a laminated structure composed of the germanium-based crystal and the silicon crystal onto the supporting substrate.
摘要:
A method of manufacturing an SOQ substrate and an SOQ substrate manufactured by the same are disclosed. In the method, hydrogen ions are implanted to a surface of a single crystal Si substrate through an oxide film to uniformly form an ion implanted layer at a predetermined depth from the surface of the single crystal Si substrate, and a bonding surface of the substrate undergoes a plasma treatment or an ozone treatment. An external shock is applied onto the single crystal Si substrate and quartz substrate, which are bonded together, to mechanically delaminate a silicon film from a single crystal silicon bulk. In this way, the SOQ film is formed on the quartz substrate through the oxide film. To further smooth the SOQ film surface, hydrogen heat treatment is performed at a temperature of 1000° C. or less below a quartz glass transition point.
摘要:
On the side of a surface (the bonding surface side) of a single crystal Si substrate, a uniform ion implantation layer is formed at a prescribed depth (L) in the vicinity of the surface. The surface of the single crystal Si substrate and a surface of a transparent insulating substrate as bonding surfaces are brought into close contact with each other, and bonding is performed by heating the substrates in this state at a temperature of 350° C. or below. After this bonding process, an Si—Si bond in the ion implantation layer is broken by applying impact from the outside, and a single crystal silicon thin film is mechanically peeled along a crystal surface at a position equivalent to the prescribed depth (L) in the vicinity of the surface of the single crystal Si substrate.