摘要:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
摘要:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
摘要:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
摘要:
A fin is formed over a first barrier layer over a substrate. The first barrier layer has a band gap greater than the band gap of the fin. In one embodiment, a gate dielectric layer is deposited on the top surface and opposing sidewalls of the fin and is adjacent to a second barrier layer deposited on the first barrier layer underneath the fin. In one embodiment, the gate dielectric layer is deposited on the top surface and the opposing sidewalls of the fin and an isolating layer is formed adjacent to the first barrier layer underneath the fin. In one embodiment, the gate dielectric layer is deposited on the top surface and the opposing sidewalls of the fin, and an isolating layer is formed adjacent to the second barrier layer deposited between the fin and the first barrier layer.
摘要:
A fin is formed over a first barrier layer over a substrate. The first barrier layer has a band gap greater than the band gap of the fin. In one embodiment, a gate dielectric layer is deposited on the top surface and opposing sidewalls of the fin and is adjacent to a second barrier layer deposited on the first barrier layer underneath the fin. In one embodiment, the gate dielectric layer is deposited on the top surface and the opposing sidewalls of the fin and an isolating layer is formed adjacent to the first barrier layer underneath the fin. In one embodiment, the gate dielectric layer is deposited on the top surface and the opposing sidewalls of the fin, and an isolating layer is formed adjacent to the second barrier layer deposited between the fin and the first barrier layer.
摘要:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
摘要:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
摘要:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
摘要:
Non-planar semiconductor devices having channel regions with low band-gap cladding layers are described. For example, a semiconductor device includes a vertical arrangement of a plurality of nanowires disposed above a substrate. Each nanowire includes an inner region having a first band gap and an outer cladding layer surrounding the inner region. The cladding layer has a second, lower band gap. A gate stack is disposed on and completely surrounds the channel region of each of the nanowires. The gate stack includes a gate dielectric layer disposed on and surrounding the cladding layer and a gate electrode disposed on the gate dielectric layer. Source and drain regions are disposed on either side of the channel regions of the nanowires.
摘要:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.