Abstract:
An implantable medical device system includes an implantable cardioverter defibrillator (ICD) for detecting and treating ventricular tachycardia (VT). The ICD includes a sensing module for sensing a cardiac signal from available cardiac signal sensing vectors. A control module generates morphology templates of the cardiac signals for multiple patient postures for each of the available sensing vectors and determines a set of posture-independent template features. An unknown cardiac rhythm is classified in response to comparing features of a cardiac signal received during the unknown rhythm to the set of posture-independent features.
Abstract:
A medical device and associated method for discriminating cardiac events includes sensing a cardiac signal spatially located across approximately a full duration of a predetermined sensing window. A match score is determined corresponding to the sensed cardiac signal. A beat feature of multiple beat features across less than the full duration of the sensing window is determined, the beat feature being selected from the multiple beat features in response to the match score. Cardiac event evidence is accumulated in response to the match score and the determined beat feature, and cardiac events are discriminated in response to the accumulated cardiac evidence.
Abstract:
A method and system for use with an implantable medical device for subcutaneous implant within a patient to determine a likelihood of the patient experiencing a cardiac event that includes sensing a cardiac signal along a plurality of different sensing vectors, determining state information of each vector of the plurality of sensing vectors, determining a cross correlation of the determined state information of each vector of the plurality of sensing vectors, comparing the cross correlation of the determined state information of each vector of the plurality of sensing vectors to a threshold, and detecting the cardiac event in response to the comparing.
Abstract:
A method and medical device for generating a template that includes sensing a cardiac signal from a plurality of electrodes, determining a plurality of beats in response to the sensed cardiac signal, determining whether to store a beat of the plurality of beats in a subgroup of a plurality of subgroups for storing beats, determining whether a number of beats stored in one of the plurality of subgroups exceeds a subgroup threshold, and generating a template in response to beats stored in the one of the plurality of subgroups that exceeds the subgroup threshold.
Abstract:
A medical device and associated method for discriminating cardiac events includes sensing a cardiac signal spatially located across approximately a full duration of a predetermined sensing window. A match score is determined corresponding to the sensed cardiac signal. A beat feature of multiple beat features across less than the full duration of the sensing window is determined, the beat feature being selected from the multiple beat features in response to the match score. Cardiac event evidence is accumulated in response to the match score and the determined beat feature, and cardiac events are discriminated in response to the accumulated cardiac evidence.
Abstract:
A method and medical for detecting a cardiac event that includes sensing cardiac signals from a plurality of electrodes, the plurality of electrodes forming a first sensing vector and a second sensing vector, determining, during first processing of a first interval sensed along the first sensing vector during a predetermined sensing window and a second interval sensed along the second sensing vector during the predetermined sensing window, whether one or both of the first interval and the second interval is within one of a ventricular tachycardia shock zone and a ventricular fibrillation shock zone, identifying the cardiac event as a shockable event in response to one or both of the first interval and the second interval determined as being within the ventricular tachycardia shock zone, identifying the cardiac event as a shockable event in response to both of the first interval and the second interval determined as being within the ventricular fibrillation shock zone, and determining whether to confirm the cardiac event being identified as a shockable event in response to the identifying.
Abstract:
A medical device and associated method for detecting and treating tachyarrhythmias acquires a cardiac signal using electrodes coupled to a sensing module. Cardiac events are sensed from the cardiac signal and a processing module computes a first morphology metric for each sensed cardiac event occurring during a time segment of the cardiac signal. The first morphology metrics corresponding to an event originating in a ventricular chamber are counted. The first processing module computes a second morphology metric for the time segment of the cardiac signal in response to the count of the first morphology metrics meeting a threshold number of events. The time segment is classified as a shockable segment in response to the second morphology metric meeting a detection criterion.
Abstract:
A medical device and associated method for controlling a cardiac pacing therapy sense a first cardiac signal including events corresponding to cardiac electrical events and a second cardiac signal including events corresponding to cardiac hemodynamic events. A processor is enabled to measure a cardiac conduction time interval using the first cardiac signal and control a signal generator to deliver a pacing therapy. A pacing control parameter is adjusted to a plurality of settings during the pacing therapy delivery. A hemodynamic parameter value is measured from the second cardiac signal during application of each of the control parameter settings. The processor identifies an optimal setting from the plurality of settings and solves for a patient-specific equation defining the pacing control parameter as a function of the cardiac conduction time interval.
Abstract:
A medical device is configured to sense an electrical signal and determine that signal to noise criteria are met based on electrical signal segments stored in response to sensed electrophysiological events. The medical device is configured to determine an increased gain signal segment from one of the stored electrical signal segments in response to determining that the signal to noise criteria are met. The medical device determines a noise metric from the increased gain signal segment. The stored electrical signal segment associated with the increased gain signal segment may be classified as a noise segment in response to the noise metric meeting noise detection criteria.
Abstract:
An extra-cardiovascular implantable cardioverter defibrillator senses R-waves from a first cardiac electrical signal by a first sensing channel and stores a time segment of a second cardiac electrical signal in response to each sensed R-wave. The ICD determines intervals between successively sensed R-waves and, in response to at least a predetermined number of the intervals being less than a tachyarrhythmia detection interval, analyzes at least a portion of the time segment of the second cardiac electrical signal corresponding to a most recent one of the sensed R-waves to confirm the most recent one of the R-waves. The ICD updates an unconfirmed beat count in response to the most recent one of the R-waves not being confirmed and withholds detection of a tachyarrhythmia episode in response to the unconfirmed beat count being equal to or greater than a rejection threshold.