Abstract:
A method and a device for operating a wind farm with a plurality of wind turbines are provided. According to the method, operating parameters of the wind turbines of the wind farm are adjusted according to an optimization goal, the optimization goal being the maximum value of the total output of the wind farm produced from the sum of all individual outputs of the wind turbines. The optimization goal differs from conventional optimization goals where the respective individual outputs of the wind turbines are optimized without taking the overall output into consideration.
Abstract:
A method of determining at least one rotation parameter of a wind turbine rotor rotating with a rotation speed and a phase is provided. The method includes: measuring an effective centrifugal force acting in a first pre-determined direction, which is defined in a co-ordinate system rotating synchronously with the rotor, on at least one reference object located in or at the rotor, establishing a first angular frequency representing the rotation speed of the rotor on the basis of variations in the measured effective centrifugal force due to gravitational force, establishing a second angular frequency representing the rotation speed of the rotor by use of at least one yaw rate gyro, and establishing the value of the rotation speed as the rotational parameter by correcting the second angular frequency by comparing it to the first angular frequency.
Abstract:
A method and an arrangement for the damping of tower-oscillations are provided. The method for the damping of tower-oscillations includes transforming a rotation into electrical power using a generator, which is located on top of the tower. The electrical power is transformed from AC to DC and back to AC by a converter. A power-reference-signal is used by the converter to control the delivered electrical power. A variable power-offset-signal is added to the power-reference-signal before it is used for the control. The variable power-offset-signal is based on a mean value of the power-reference-signal and a side-to-side-oscillation of the tower.
Abstract:
It is described a method for balancing a rotor mounted on a hub of a wind turbine. The method includes measuring a parameter value of a parameter being indicative of the revolution frequency components of the rotor and/or of a generator of the wind turbine during operation of the wind turbine, calculating a change of the spatial mass distribution of the rotor based on the parameter value of the parameter, which change is needed for balancing the rotor, and balancing the spatial mass distribution of the rotor by using at least one balancing weight element being attachable to at least one blade of the rotor based on the calculated change of the spatial mass distribution. It is further described a system for balancing a rotor, a wind turbine, a computer program and a computer-readable medium, which are all adapted for carrying out the above described balancing method.
Abstract:
A method for reducing vibrations of a wind turbine includes a plurality of set points characterizing set values of operation parameters of the wind turbine. The method includes measuring an acceleration force value corresponding to acceleration forces acting on the turbine, and determining whether the measured acceleration force value is above a predetermined threshold value. Furthermore, in case it is determined that the acceleration force value is above the predetermined threshold value, the set point value of at least one set point of the plurality of set points is modified in order to reduce the vibrations in such a way that a power output of the wind turbine is not reduced.
Abstract:
A method for adjusting a power parameter of a wind turbine is disclosed. The method includes determining a load parameter indicative of a mechanical load of the wind turbine; estimating a turbulence of a wind speed based on the determined load parameter; and adjusting the power parameter relating to a power of the wind turbine based on the estimated turbulence. A system for adjusting a power parameter of a wind turbine is also described.
Abstract:
A method an apparatus of automatically controlling a wind turbine re provided. of: A time-series of measurement values of the aerodynamic flow property of the wind turbine rotor blade is determined; a predictive wind field model representing a structure of a wind field acting on the wind turbine rotor blade is generated based on the time-series of measurement values, and a control value is generated based on the wind-field model.
Abstract:
An apparatus for determining a resonant frequency of a wind turbine tower is provided. The apparatus includes a processing unit configured to receive an acceleration measurement value, the acceleration measurement value representative of the acceleration of the wind turbine tower in the direction parallel to a rotor rotational axis of the wind turbine and/or in the direction perpendicular to both the rotor rotational axis and the tower axis of the wind turbine. The apparatus includes a memory configured to store a series of acceleration measurement values, and the processing unit includes a Fourier transform module configured to calculate a spectral vector based on calculating a convolution-based fast Fourier transform of the series of acceleration measurement values, and includes a resonant frequency calculation module configured to calculate the tower resonant frequency based on the calculated spectral vector.
Abstract:
A method of determining fatigue load of at least one operative wind turbine, comprising: providing a transfer function that associates an obtained at least one measurement value of a first sensor to an obtained at least one measurement value of a second sensor the at least one measurement value of the first sensor and the at least one measurement value of the second sensor being obtained by use of a reference wind turbine at which the first sensor and the second sensor are located; obtaining at least one measurement value of a third sensor, wherein the third sensor is located at the at least one operative wind turbine, and wherein the third sensor corresponds in type and position to the first sensor at the reference wind turbine; calculating at least one transfer function value corresponding to the obtained at least one measurement value of the third sensor by use of the provided transfer function; calculating the fatigue load of the at least one operative wind turbine based on the calculated transfer function value.
Abstract:
A measurement arrangement for measuring a deflection of a wind turbine rotor blade is provided. The measurement arrangement includes a magnetostrictive sensor, which includes a first sensor part and a second sensor part, a first support structure, which is adapted to be mounted to a first portion of the rotor, wherein the first sensor part is mounted to the first support structure, and a second support structure, which may be mounted to a second portion of the rotor, wherein the second sensor part is mounted to the second support structure and wherein either or both the first portion and the second portion is a portion of the blade. The magnetostrictive sensor measures the relative spatial position between the first sensor part and the second sensor part. A method for measuring a blade deflection and a wind turbine rotor which includes the described blade deflection measurement arrangement are also provided.