摘要:
A wind turbine rotor blade element includes a first portion and a second portion connected to each other is described. The first portion includes a rear surface for facing a surface of a wind turbine rotor blade and the second portion includes a top surface which includes an angle between 90° and 180° with the rear surface of the first portion.
摘要:
A wind turbine rotor blade with a suction side and a pressure side is provided. The blade includes a cylindrical root portion, an airfoil portion defining the suction side and the pressure side, and a transition portion which is located between the airfoil portion and the root portion. The transition portion has a transition profile changing from the airfoil of the airfoil portion to the cylindrical profile of the root portion. The leading section of the transition profile is cylindrical and the trailing section of the transition profile is elongated. In the rotor blade, the maximum chord length of the airfoil portion is at least the maximum chord length of the transition portion. In addition, the transition profile includes a section with a concave curvature on the pressure side of the rotor blade.
摘要:
An aerodynamic slat (30F) having a flatback trailing edge (44F) extending along and spaced proximate an inboard portion of a wind turbine blade (22). At least the leading edge (42F) of the slat may be disposed within a zone (48) of airflow that is generally parallel to the suction side (40) of the wind turbine blade over a range of air inflow angles. A splitter plate (52) may extend aft from the flatback trailing edge to reduce vortex shedding and extend the effective chord length of the slat. Vortex generators (60) may be attached to the slat. Flatback slats may be retrofitted to a wind turbine rotor (20) by attaching them to the spar caps (56) of the blades or to the hub spinner (28). The flatback slat provides lift on low-lift inboard portions of the wind turbine blade over a range of angles of attack of the inboard portion.
摘要:
A method and a device for operating a wind farm with a plurality of wind turbines are provided. According to the method, operating parameters of the wind turbines of the wind farm are adjusted according to an optimization goal, the optimization goal being the maximum value of the total output of the wind farm produced from the sum of all individual outputs of the wind turbines. The optimization goal differs from conventional optimization goals where the respective individual outputs of the wind turbines are optimized without taking the overall output into consideration.
摘要:
A method for aligning a wind turbine with the wind direction is provided. The method includes measuring at least one first pressure at a first side of the wind turbine's nacelle, determining the pressure difference between the measured first pressure and a second pressure, and rotating the nacelle in dependence to the determined pressure difference. A wind turbine arrangement including a nacelle, a yaw alignment controller, and a yaw drive is also provided.
摘要:
A wind turbine rotor blade with an airfoil profile having an upwind side, a downwind side is provided. A stall inducing device is located at the upwind side of the airfoil profile.
摘要:
A wind turbine blade is provided. The wind turbine blade has multiple vortex generators, each projecting from a surface of the blade and having a predetermined length. The vortex generators are arranged on a strip. The width of the strip is several times larger than the length of a vortex generator.
摘要:
An aerodynamic slat (30F) having a flatback trailing edge (44F) extending along and spaced proximate an inboard portion of a wind turbine blade (22). At least the leading edge (42F) of the slat may be disposed within a zone (48) of airflow that is generally parallel to the suction side (40) of the wind turbine blade over a range of air inflow angles. A splitter plate (52) may extend aft from the flatback trailing edge to reduce vortex shedding and extend the effective chord length of the slat. Vortex generators (60) may be attached to the slat. Flatback slats may be retrofitted to a wind turbine rotor (20) by attaching them to the spar caps (56) of the blades or to the hub spinner (28). The flatback slat provides lift on low-lift inboard portions of the wind turbine blade over a range of angles of attack of the inboard portion.
摘要:
A wind turbine rotor blade defined by a tip point, a shoulder, a maximum chord interval which is defined as the radial interval over which the blade chord is no less that 95% of the shoulder chord and which extends over at least 15% of the entire blade length, and an outer blade interval extending from the maximum chord interval to the tip point, wherein the outer blade interval has a concave hyperbolic chord distribution from the maximum chord interval towards the tip point. Further a method for optimizing the chord distribution of a wind turbine blade layout is provided, wherein the chord distribution is optimized by optimizing the chord distribution in the maximum chord interval by maximizing the ratio of the annual energy production to the loads acting on the blade and in the outer blade interval with respect to the annual energy production alone.
摘要:
A wind turbine rotor blade with an airfoil profile having an upwind side, a downwind side is provided. A stall inducing device is located at the upwind side of the airfoil profile.