Abstract:
Systems and methods are disclosed for generating a statistical profile of a MIMO channel. Packets of information may be transmitted over an interval of time to a plurality of stations using a plurality of MIMO modes. Each packet may be binned and a goodput value corresponding to the bin, the station and the MIMO mode may be determined stored.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system through efficient transmissions and acknowledgements of information between an AP and a station. The time between a determination by a station to enter a power saving mode and entering network sleep mode by the station may be reduced through a transmission, by an AP, of an MPDU to the station successive to an SIFS after transmission of an acknowledgement to the station of a PS-Poll frame from the station. The time to enter a power saving mode by a station may also be reduced through transmission of A-MPDUs in which a last MPDU of the A-MPDU has an indicator bit cleared to indicate no additional data is to be transmitted. An AP may prevent a retransmission of an MPDU to the station in the absence of an acknowledgement from the station, to further enhance efficiency.
Abstract:
A method of providing multicast rate control in a wireless communication device can include transmitting data frames to a plurality of stations in a multicast group with a first data rate. Acknowledgements (ACKs) can then be requested from a first subset of the plurality of stations. Frame losses can be determined using the ACKs from the first subset. A second data rate can be determined based on the frame losses with the first subset. A second subset of the plurality of stations can be selected based on the frame losses with the first subset. Data frames can be transmitted to the plurality of stations with the second data rate. Notably, ACKs only from the second subset of the plurality of stations are requested. Frame losses for the second subset can be determined using those ACKs. A current data rate can be adjusted based on the frame losses for the subset and at least one predetermined threshold. Data frames can be transmitted to the plurality of stations using the adjusted data rate.
Abstract:
An access point can include an array of antennas and a smart antenna selector. The smart antenna selector is configured to select a subset of antennas from the antenna array for use in multi-user multiple-input multiple-output (MU MIMO) data transmissions. Stations that are communicatively coupled to the access point can be selected for inclusion in a multi-user group based, at least in part, on performance measurements of the stations. Performance measurements are determined directly and indirectly from data transmissions sent in response to sounding packets. Antennas for use in MU MIMO data transmissions are selected for the antenna array based, at least in part, on previous antenna selections used for single user data transmissions.
Abstract:
Various aspects of the disclosure described herein provide for optimizing rate control during a selection of a communications profile from a set of communications profiles by taking into account effective frame aggregation size as a function of packet error rate (PER). An expected throughput may also be determined for each communications profile and updated after each transmission so that a communications profile having the highest expected throughput may be chosen for a particular frame transmission.
Abstract:
MAC layer frame aggregation and block acknowledgement are used in some WLAN technologies to improve efficiency of a communications channel by reducing PHY layer overhead. A frame aggregation window size defines how many MAC protocol data units (MPDUs) are included in an aggregated MPDU (AMPDU) frame. The frame aggregation window for a subsequent AMPDU frame is typically dependent upon the characteristics of the block acknowledgement—such as the number of non-acknowledged (NAK) MPDUs or the position of a hole in the previous AMPDU frame. A small frame aggregation window size may impact throughput especially at higher transmission rates. In this disclosure a transmission rate may be determined based, at least in part, on a projected frame aggregation window size resulting from a block acknowledgement. The frame aggregation feedback (e.g. block acknowledgement) may be used by a rate control module to determine a transmission rate that optimizes frame aggregation efficiency.
Abstract:
One innovation includes an apparatus, for wirelessly communicating with a communication system via a first wireless channel and a second wireless channel, including a memory unit that is configured to store a first data packet and a second data packet, the first data packet and the second data packet have consecutive sequence numbers. The apparatus further includes a processor configured to retrieve the first data packet and the second data packet from the memory unit, a transceiver that is configured to transmit the first data packet to the communication system via the first channel, to receive a first acknowledgement from the communication system and to transmit the second data packet to the communication system via the second channel after the processor detects that the first acknowledgement comprises a positive acknowledgement of the first reception information.