Abstract:
A plurality of sensors are controlled and processed by an electronic control unit (ECU). Each sensor compresses the raw data samples, encapsulates them into IP packets, and transmits them to the ECU over the Ethernet transport. The ECU decompresses the IP packets, and individually performs sensor-specific signal processing prior to performing multi-modal sensor fusion. Additionally, if the underlying sensor is a Radar sensor, the ECU performs interference detection, interference mitigation, interference management, transmits compressed beamforming weights to enable transmit beamforming on the Radar sensor.
Abstract:
As the proliferation of data rich content and increasingly more capable mobile devices has continued, the amount of data communicated over mobile operator's networks has increased. Upgrading the existing network that was designed for voice calls is not desirable or practical for many mobile operators. This disclosure relates to a mobility edge gateway that resides on the edge of the core network and can provide one or more services such as call localization, offloading of traffic, session management, and content streaming. The call localization involves identifying calls that can be maintained at the edge of the network and bridging the calls at the mobility edge gateway to bypass the core network. The offloading involves identifying traffic and offloading the traffic to the Internet or another network to bypass the core network. These services can relieve congestion on the core network of mobile operator's networks.
Abstract:
This disclosure relates to a system and method for offloading selected data to an alternate communication network. The offloading provides another route for selected packet traffic that can relieve the burden on a mobile operator's network, such as the backhaul and core networks. As the proliferation of data rich content and increasingly more capable mobile devices has continued, the amount of data communicated over mobile operator's networks has exponentially increased. Upgrading the existing network that was designed for voice calls is not desirable or practical for many mobile operators. A offload gateway is provided that inspects packets and determines those packets to offload to an alternate network as well as providing mobility management to allow for seamless handoffs and gateway relocations.
Abstract:
In one embodiment, a gateway implements: detecting that a mobile device using a communication session in a mobile network is associated with a mobile videoconferencing application, where the videoconferencing application is capable of sending and receiving media streams; and providing from the mobile network to a videoconferencing system within a fixed network a first set of indicators associated with the communication session, and performing policy control, the policy control including: causing the videoconferencing system within the fixed network to be configured to accommodate communications with the mobile device, causing an adjustment to a session bearer within the mobile network to meet a quality of service requirement of a videoconferencing media stream connected to the mobile device, and causing a media bridge to provide a media stream to accommodate the end point.
Abstract:
The invention is a new protocol for securing the communication link between the Home Agent and the Mobile Node. A cipher key and an integrity key are generated at a home AAA server and are also generated independently at the Mobile Node. The two keys generated at the home AAA server are transmitted to the Home Agent to secure information packets transmitted between the Mobile Node and the Home Agent. The cipher key and integrity key are used to establish a security association used for information packet transmissions. The cipher key is used to encrypt the information packets, and the integrity key is used to ensure that the contents of the encrypted message are not altered.
Abstract:
The invention consists of an authentication protocol for the Home Agent to authenticate and authorize the Mobile Node's Binding Update message. Two new mobility options compatible with RADIUS AAA are used to exchange a shared secret between the Home Agent and the Mobile Node so the Mobile Node can be authenticated.A Mobile Node-AAA authenticator option is added to the Binding Update message. The Home Agent generates the Mobile Node-AAA authenticator as a shared secret that it communicates as authentication data to the RADIUS AAA server on the home network. The RADIUS AAA server authenticates the communication and generates an Access-Accept message with a Mobile Node-Home Agent authenticator option. After receipt at the Home Agent, a Binding Update message with the Mobile Node-Home Agent authenticator option is transmitted from the Home Agent to the Mobile Node to use as an authenticator.
Abstract:
A system and method are disclosed for providing mobility management among mobile nodes in a communication network. Emulation can be provided to allow a mobile node that uses mobile IP (MIP) to access and use a communication network that is based on proxy mobile IP (PMIP). A gateway can be used to terminate the MIP based protocol access from the mobile node and communicate with the PMIP based core network. Emulation can be provided on a gateway to provide communication from a internet protocol version 4 (IPv4) mobile node and a core network running internet protocol version 6 (IPv6). This allows the network operator to provide access to the deployed base of MIP or IPv4 mobile nodes.
Abstract:
Systems and methods are disclosed that provide self management of network devices in a communication network. These management abilities allow a network device to perform functions, for example, that improve resource distribution, allow for maintenance and upgrades, and provide session management and policy enforcement in a coherent and organized fashion. In a self organizing network (SON), some network devices can be configured to provide self-configuration and self-optimizing capabilities to provide the ability to automate certain operations and management functions and system management functions. The SON incorporates self-configuration, self-optimization, monitoring, and operation management to allow the network devices to be inserted into the network and operate with little to no human intervention.
Abstract:
Systems and methods for call localization are provided. The call localization can be provided in a radio access network by detecting a call flow between mobile node such as user equipment (UE) served by the same radio access network device. For example, a gateway can detect a call localization opportunity and the call can be localized with an evolved nodeB (eNB). The method provides for efficient routing, reporting of billing information, lawful monitoring, and mobility if one or both user equipment leave the common eNB.
Abstract:
A mobile communications network includes various entities, such as a mobile station, a radio network, and a packet data node. In one implementation, the mobile station is enabled for an always-on service. In response to detecting that the mobile station is an always-on mobile station, the packet-data node denies requests from the radio network to tear down a packet data session of the mobile station unless some predetermined criterion has been met.