Abstract:
A skid for supporting a reciprocating pump assembly, the reciprocating pump assembly including a power end frame assembly having a pair of end plate segments and a plurality of middle plate segments disposed between the end plate segments. The end plate segments each have at least a pair of feet and the middle plate segments each having at least one foot. The skid includes a base and a plurality of pads extending from the base. At least a portion of the plurality of pads correspond to the end plate segment feet and at least another portion of the plurality of pads correspond to the at least one foot of each middle plate segment.
Abstract:
A valve seat at least partially formed of a ceramic material for use in a fracturing pump includes a first body and a second body. The first body is configured to be inserted into a fluid passageway of the fracturing pump. The first body has an outer diameter, D1. The second body extends radially from the first body and has an outer diameter, D2, greater than the outer diameter, D1, of the first body. The second body is at least partially formed of the ceramic material.
Abstract:
A fluid end block for attachment to a power end of a high pressure reciprocating pump includes a main body portion having an outwardly facing body forward face, an outwardly facing body rear face opposite the body forward face, and opposing side surfaces. A web portion protrudes outwardly from the outwardly facing body forward face. The web portion may have an outwardly facing web forward face and a curvilinear side surface. The web portion may be integral with the main body portion. A plurality of bosses protrude from the web forward face and having a forward facing end. The plurality of bosses may be integral with the main body portion and the web portion. A plunger bore extends through one of the plurality of bosses configured to receive a reciprocating plunger.
Abstract:
A dual circuit lubrication system for a power end of a reciprocating pump that includes a lubrication pump that supplies lubrication fluid to a high pressure lubrication circuit and a low pressure lubrication circuit. The high pressure lubrication circuit is fluidly coupled to a crankshaft to supply lubrication fluid to sliding surfaces associated with the crankshaft at a first lubrication fluid pressure. The crankshaft drives a crosshead coupled to a plunger to displace fluid from a fluid end of the reciprocating pump. The low pressure lubrication circuit is fluidly coupled to supply the lubrication fluid to a plurality of rolling surfaces associated with the crankshaft at a second lubrication fluid pressure. The first lubrication fluid pressure is greater than the second lubrication fluid pressure.
Abstract:
A power end frame assembly for a reciprocating pump that includes a first and second end plate segment each including annular bearing support surfaces configured to support a crankshaft bearing assembly. At least one middle plate segment is disposed between the first and second end plate segments and includes an annular bearing support surface configured to support a crankshaft bearing assembly. The annular bearing support surfaces of the first and second end plate segments and the at least one middle plate segment each have a diameter and are coaxially aligned. The diameter of at least one of the first and second end plate segments is different from the diameter of the at least one middle plate segment to facilitate insertion and removal of the crankshaft bearing assembly from the power end frame assembly.
Abstract:
A fluid end 15 for a multiple reciprocating pump assembly 12 comprises at least three plunger bores 61 or 91 each for receiving a reciprocating plunger 35, each plunger bore having a plunger bore axis 65 or 95. Plunger bores being arranged across the fluid head to define a central plunger bore and lateral plunger bores located on either side of the central plunger bore. Fluid end 15 has suction valve bores 59 or 89, each suction valve bore receiving a suction valve 41 and having a suction valve bore axis 63 or 93. Discharge valve bores 57 or 87, each discharge valve bore receiving a discharge valve 43 and having a discharge valve bore axis 63 or 93. The axes of at least one of suction 10 and discharge valve bores is inwardly offset in the fluid end from its respective plunger bore axis.
Abstract:
A gearbox is coupled to a power end housing of a reciprocating pump, where the gearbox includes at least one support member having a first end securely affixed to the gearbox, and the at least one support member having a second end securely affixed to an immobile part of the reciprocating pump for supporting the gearbox and resisting movement of the gearbox relative to the reciprocating pump.
Abstract:
A valve assembly for use in a fracturing pump including a valve member movable into and out of engagement with a valve seat body. The valve seat body includes an outer surface and an inner surface, the inner surface forming a fluid bore extending between a first end and a second end of the valve seat body. The body further includes a seating surface extending radially from the inner surface and facing the valve member, the seating surface having a recessed area. An insert is disposed in the recessed area forming at least a portion of the inner surface and at least portion of the seating surface. The valve seat body first end has a diameter different from a diameter valve seat body second. The difference between diameters allows the valve seat body outer surface to be supported by the fluid passageway.