Abstract:
A system includes a variable displacement pump (VDP) in fluid communication with an inlet line and with an outlet line. The VDP includes a variable displacement mechanism configured to vary pressure to the outlet line. A bypass valve (BPV) includes a BPV inlet in fluid communication with the outlet line, and a BPV outlet in fluid communication with a bypass line that feeds into the inlet line upstream of the VDP. An actuator is operatively connected to control the BPV to vary flow from the BPV inlet to the bypass line. A controller is operatively connected to the actuator to control recirculation flow passed through the BPV based on requested flow from a downstream system supplied by the outlet line and based on a predetermined low threshold of flow through the VDP.
Abstract:
A method and an apparatus for cleaning a channel, especially a transmission and/or cooling channel, in any type of device, machine, installation, and/or tool, particularly in any type of heat exchanger and/or a molding core, cavity and/or insert is proposed, wherein a channel is cleaned through dynamic, bi-directional pulsation of cleaning medium inside the to-be-cleaned channel, the method being realized by a cleaning apparatus equipped with a diaphragm pump module, plugged either only in the feed side of the transmission line or in the feed side and in the return side, which, after connecting the diaphragm pump module to the external energy source and shutting off the flow control system from the reservoir and the feed pump, allows for putting cleaning medium into a state of two-way dynamic pulsating motion.
Abstract:
A method for evaluating data from a reciprocating downhole pump includes the steps of acquiring downhole position and load data, providing the position and load data to a processing unit, normalizing the position and load data, converting the position and load data to a calculated polar coordinate data set, evaluating the calculated polar coordinate data set to determine a condition or occurrence at the reciprocating pump, and outputting calculated key parameters for controlling and optimizing the reciprocating pump and beam pumping unit. The method further comprises a step of creating a library of reference data sets, comparing the calculated polar data set against the library of ideal and reference data sets, identifying one or more reference data sets that match one or more portions of the calculated polar data set, and outputting the probability of one or more of the known conditions within the calculated polar data set.
Abstract:
A pumping unit (20) includes a hopper assembly (24) for holding material to be pumped, a pair of identical pumping assemblies (26, 28), and a pumped material outlet (30). The assemblies (26, 28) include directional or spool valves (54) having rotatable spools (76), tubular pumping chambers (56), and pistons (122) within the chambers (56). The pistons (122) include concave operating faces (134), which are complemental and mate with the outer surfaces of the spools (76). Operation of the unit (20) creates successive charges of pumped materials having a minimum of disruptions, such as tearing or smearing.
Abstract:
A power end frame assembly for a reciprocating pump that includes a first and second end plate segment each including annular bearing support surfaces configured to support a crankshaft bearing assembly. At least one middle plate segment is disposed between the first and second end plate segments and includes an annular bearing support surface configured to support a crankshaft bearing assembly. The annular bearing support surfaces of the first and second end plate segments and the at least one middle plate segment each have a diameter and are coaxially aligned. The diameter of at least one of the first and second end plate segments is different from the diameter of the at least one middle plate segment to facilitate insertion and removal of the crankshaft bearing assembly from the power end frame assembly.
Abstract:
A slurry injection system has a plurality of slurry valves fluidically coupled to first and second elongated tanks. In the first state, the slurry valves communicate high pressure slurry from the second volume to a site and communicate low pressure slurry to the fourth volume. In the second state, the slurry valves communicate low pressure slurry to the second volume and high pressure slurry from the fourth volume to the slurry injection site and in the intermediate state communicating high pressure slurry simultaneously from the first elongated tank and the second elongated tank to the slurry injection site. In the first state clear fluid valves fluidically communicate high pressure clear fluid to the first volume and low pressure clear fluid from the third volume and, in a second state, communicate low pressure clear fluid from the first volume and high pressure clear fluid to the third volume.
Abstract:
A skid for supporting a reciprocating pump assembly, the reciprocating pump assembly including a power end frame assembly having a pair of end plates and a plurality of middle plates disposed between the end plates. The end plates each have at least a pair of feet and the middle plates each having at least one foot. The skid includes a base and a plurality of pads extending from the base. At least a portion of the plurality of pads correspond to the end plate feet and at least another portion of the plurality of pads correspond to the at least one foot of each middle plate.
Abstract:
A power end frame assembly for a reciprocating pump that includes a first and second end plate segment each including annular bearing support surfaces configured to support a crankshaft bearing assembly. At least one middle plate segment is disposed between the first and second end plate segments and includes an annular bearing support surface configured to support a crankshaft bearing assembly. The annular bearing support surfaces of the first and second end plate segments and the at least one middle plate segment each have a diameter and are coaxially aligned. The diameter of at least one of the first and second end plate segments is different from the diameter of the at least one middle plate segment to facilitate insertion and removal of the crankshaft bearing assembly from the power end frame assembly.
Abstract:
An electroproportionally controlled differential pressure valve cartridge includes actuation and tank ports on an outer circumference, and a pump port on a face-side. A spring preloads a piston into a position that relieves pressure from the actuation port to the tank port. A current increase through an electromagnet opposite the pump port and a pressure increase at the pump port counter the spring to open a connection from the pump port to the actuation port. A concentric opening extends from the pump port to a first piston surface. A duct extends from the first piston surface to a pump chamber. A further duct extends from the pump port to a spring chamber between the pump chamber and electromagnet. In the spring chamber, pressure over a second piston surface counters pressure over the first piston surface.