Abstract:
A method and apparatus are configured to recognize mobile terminals positioned within a coverage area for short range communication with a user-specific device, wherein each mobile terminal comprises identification information for the user-specific device. The method and the apparatus provide a customized service corresponding to at least one of the mobile terminals.
Abstract:
A biosignal measuring method and apparatus are provided. The biosignal measuring method includes verifying whether a measured biosignal is in a range, and controlling an operation of the biosignal measuring apparatus when the measured biosignal deviates from the range based on a result of the verifying.
Abstract:
A method and an apparatus for gesture recognition and a wearable device for gesture recognition are described. A method of gesture recognition involves using a processor to detect a motion artifact from an output signal of a biosignal sensor and generating a control signal to control a function of a target device that corresponds to a reference signal pattern in response to a signal pattern of the detected motion artifact corresponding to the reference signal pattern.
Abstract:
A wearable device and a communication method using the wearable device may include recognizing a gesture of a user by sensing at least one of a motion and a biosignal that occur in or around a portion of the user to which the wearable device is attached. A wireless communication connection is established for the wearable device with at least one of an external device, an internal device, or another wearable device based on the recognized gesture. Wireless communication is performed with at least one of the external device and the internal device with which the wireless communication connection is established.
Abstract:
A security apparatus includes an encryptor configured to visually encrypt a target object, and a decryptor configured to decrypt an area corresponding to a decryption gesture in the encrypted target object, during a predetermined period of time.
Abstract:
An operation method of a master node, the method including transmitting, to a slave node, a first resource reservation information including packet information about a packet to be transferred between the master node and the slave node; allocating a radio resource corresponding to the first resource reservation information, for exchanging security information; transferring the packet using the allocated radio resource; and determining whether the packet was successfully transferred based on the packet information.
Abstract:
A method and apparatus provide for stable signal demodulation in a communication system. The method and apparatus includes including detecting an erroneous demodulation value based on backward-demodulation of received signals, using a difference between a received signal to be demodulated and a preceding signal of the received signals and correcting the error demodulation value. Alternatively, backward-demodulation is used to confirm received signals.
Abstract:
A wireless power transmission apparatus for high efficiency energy charging, includes a resonator configured to transmit power, and a power supply unit configured to supply power to the resonator. The apparatus further includes a first switching unit configured to connect the resonator to the power supply unit, and disconnect the resonator from the power supply unit, and a controller configured to control the first switching unit based on an amount of current flowing into the resonator.
Abstract:
A wireless power transmission apparatus includes a resonator configured to transmit power to another resonator, and a power supply unit configured to supply power to the resonator. The apparatus further includes a switching unit including a transistor configured to be turned on to connect the power supply unit to the resonator, and to be turned off to disconnect the power supply unit from the resonator, based on a control signal, and a diode connected in series to the transistor.
Abstract:
Provided are a method and apparatus for wirelessly transmitting energy. A wireless energy transmitter may perform sampling to obtain first samples from an alternating current (AC) signal that is induced at an energy transmission (TX) end, and may correct symbol synchronization based on a difference between a sum of absolute values of the first samples and a sum of absolute values of second samples sampled during a symbol interval in which synchronization matching is performed between a switch of the energy TX end and a switch of the energy RX end.