Abstract:
A directional backlight and a 3D image display apparatus including the directional backlight are provided. The directional backlight includes a light guide plate guiding light emitted from a light source; a diffractive device configured to adjust the direction of light exiting the light guide plate; and an aperture adjusting layer including a plurality of apertures. The aperture adjusting layer may adjust the optical output efficiency of the diffractive device.
Abstract:
A projection display apparatus that tracks a user's eye with an eye tracker and displays a high-resolution image at a position of the user's eye. The projection display apparatus includes an eye tracker configured to track an eye of a user; a projector configured to project an image; and a controller configured to control the projector, based on a position of the eye of the user obtained from the eye tracker, to perform a first operation to project a first portion of the image at a first resolution onto a first region with respect to the position of the eye of the user, and to perform one of a second operation to project a second portion of the image at a second resolution lower than the first resolution onto a second region excluding the first region, and a third operation to refrain from projecting the image in the second region.
Abstract:
A directional backlight unit and a three-dimensional image display apparatus including the directional backlight unit are provided. The directional backlight unit includes a light source, a light guide plate guiding light emitted from the light source, and a diffraction device including a plurality of sections. Each of the sections includes a grating pattern set configured to adjust the direction of light incident from the light guide plate.
Abstract:
A backlight unit and a holographic display apparatus that includes a backlight unit are provided. The backlight unit includes a light source, a first light guide plate for guiding a light beam emitted by the light source in a first direction, a second light guide plate for guiding the light beam incident via the first light guide plate in a second direction, and an output/input coupler that is disposed between the first light guide plate and the second light guide plate.
Abstract:
A directional backlight unit includes: a light source configured to emit light; a light guide plate including: an incident surface on which light emitted by the light source is incident, an emission surface from which the light incident on the incident surface is emitted, and a reflective surface facing the emission surface; a reflective polarizer provided on the emission surface and configured to transmit a portion of the light as first polarized light having a first polarization direction and reflect another portion of the light as second polarized light having a second polarization direction and being perpendicular to the first polarized light; and a diffractor configured to diffract the first polarized light transmitted through the reflective polarizer toward a plurality of viewing zones.
Abstract:
A method of forming a pattern by using an imprint process includes: forming an adhesion promoting layer only in a pattern formation region on a substrate; coating a resin to cover the substrate and the adhesion promoting layer; transferring a pattern of a stamp mold to the resin covering the substrate and the adhesion promoting layer, by pressing the stamp mold onto the resin; irradiating ultraviolet light onto the resin covering the substrate and the adhesion promoting layer, to cure the resin and form a pattern of the cured resin to correspond to the pattern of the stamp mold, on the substrate; and detaching the stamp mold from the substrate, to leave a portion of the cured resin pattern only on the adhesion promoting layer on the substrate and to remove a remaining portion of the cured resin pattern from the substrate.
Abstract:
A pattern structure includes a plurality of pattern structure units arranged on a same plane, where each of the plurality of pattern structure units includes a plurality of microstructures defined on a surface thereof and having a width of less than about 1 micrometer (μm); and a connection layer disposed between the plurality of pattern structure units and having a width of less than about 10 μm, where the connection layer connects the plurality of pattern structure units to each other.
Abstract:
A method of manufacturing a master mold includes forming a plurality of replica resin layers using a mold; forming a replica template by bonding the plurality of replica resin layers on a template; forming a replica mold layer having a pattern corresponding to a pattern of the plurality of replica resin layers using the replica template; forming a flexible stamp having a pattern formed on a surface thereof using the replica mold layer; transferring the pattern formed on the surface of the flexible stamp to a mold resin; and forming a large area master mold by etching a surface of a substrate based on a pattern shape of the mold resin.
Abstract:
A patterning method using an imprint mold, to form an imprinted pattern structure, includes providing a resist layer from which the pattern structure will be formed, performing a first imprint process on a first area of the resist layer by using the imprint mold to form a first pattern of the pattern structure through deformation of the resist layer in the first area, and performing a second imprint process on a second area of the resist layer by using the imprint mold to form a second pattern of the pattern structure through deformation of the resist layer in the second area. The first and second areas are overlapped with each other in a third area of the resist layer, and the performing the second imprint process deforms a first portion of the first pattern in the third area to form the second pattern
Abstract:
An imprinting apparatus includes: a coating unit which coats a substrate with ink including a photocurable resin in a diluent; a pressing unit which presses the ink with an imprint stamp including an uneven pattern; and a light source which irradiates light to the ink, which is in a pressed state, and cures the photocurable resin. The coating unit, the pressing unit and the light source move relative to the substrate in a processing direction. The coating unit is located ahead of the pressing unit in the processing direction.