Abstract:
A method and apparatus are provided for determining, by a wireless power transmitter, whether a wireless power receiver is removed from a wireless power network managed by the wireless power transmitter. The method includes transmitting a command signal to report power information of the wireless power receiver at stated periods; determining whether a report signal corresponding to the command signal is received from the wireless power receiver; and determining that the wireless power receiver is removed from the wireless power network, if the report signal is not received after transmitting the command signal a predetermined number of times at the stated periods.
Abstract:
An apparatus and a method are provided for efficiently transmitting emergency information in a wireless charging network. The method includes receiving wireless charging power from a wireless power transmitter; detecting an occurrence of an emergency situation; generating an emergency signal including information of the emergency situation; and transmitting the generated emergency signal to the wireless power transmitter.
Abstract:
A wireless power transmitter, a wireless power receiver, and methods of controlling the same are provided. A method of detecting a rogue device other than a wireless power receiver in the wireless power transmitter includes receiving power consumption information about the wireless power receiver from the wireless power receiver, calculating a power loss based on the received power consumption information about the wireless power receiver, determining whether the power loss exceeds a threshold, and controlling transmission power of the wireless power transmitter, determining that a rogue device exists on the wireless power transmitter, if the power loss exceeds the threshold.
Abstract:
Provided is an over-voltage protection device for a resonant wireless power transmission device. The over-voltage protection device includes an amplifier for amplifying a transmission signal, a resonance signal generator for generating a wireless resonance signal according to the transmission signal amplified by the amplifier, a voltage detector for sensing a voltage of the wireless resonance signal generated by the resonance signal generator, and a controller for monitoring the voltage detected by the voltage detector to determine whether the voltage repetitively increases and decreases with periodicity when the voltage is greater than a reference voltage and controlling the amplifier to decrease an output of the transmission device by a value according to a result of the determination.
Abstract:
A method and apparatus are provided for transmitting wireless power to a wireless power receiver. The method includes detecting wireless power receiver within a service area of a wireless power transmitter; transmitting driving power for driving the wireless power receiver; joining the wireless power receiver in a wireless power network managed by the wireless power transmitter; and transmitting charging power to the wireless power receiver.
Abstract:
A wireless multi-charging method of a power transmitter that wirelessly transmits power includes sensing a first power receiver, increasing a transmission power required for charging the first power receiver, sensing a second power receiver, decreasing the transmission power required for suspending charging of the first power receiver, and increasing the transmission power required for simultaneously charging both the first power receiver and the second power receiver.
Abstract:
Methods and apparatuses are provided for controlling power transmission in a power transmitter. Voltage information including a minimum voltage, a maximum voltage, and a first voltage, is received from each of a plurality of power receivers. Power is transmitted to the plurality of power receivers based on the voltage information. A respective report about a power reception condition is received from each of the plurality of power receivers while transmitting the power. Each respective report includes a measured voltage at a corresponding power receiver of the plurality of power receivers. A power receiver is selected from among the plurality of power receivers based on the received reports. An amount of the power is adjusted by reducing a difference between a first voltage of the selected power receiver and a measured voltage of the selected power receiver.
Abstract:
A control method of a wireless power transmitter and a wireless power transmitter. The method includes transmitting a first power with a first cycle; transmitting a second power with a second cycle, wherein the second cycle is greater than the first cycle; when a wireless power receiver is placed within a charging area and is detected by the first power, upon detecting the wireless power receiver by the first power, transmitting a third power to drive the wireless power receiver to transmit a search signal to the wireless power transmitter; and when the wireless power receiver is placed within the charging area and is not detected by the first power, using the second power to detect the wireless power receiver and drive the wireless power receiver to transmit the search signal to the wireless power transmitter.
Abstract:
A method and an apparatus for wireless power transmission by a power transmitting apparatus is provided. The method includes transmitting detection power towards a power receiving apparatus, detecting an impedance change made by the power receiving apparatus, transmitting driving power for communication with the power receiving apparatus towards the power receiving apparatus, receiving a search signal from the power receiving apparatus within a preset time, and determining whether the impedance change is within a first acceptable range based on the received search signal.
Abstract:
A control method of a wireless power receiver is provided. The control method includes wirelessly receiving a first power from a wireless power transmitter; based on the received first power, loading a first communication stack from a memory stored in a communication module of the wireless power receiver; establishing a communication connection with the wireless power transmitter based on the first communication stack; wirelessly receiving a second power from the wireless power transmitter; based on residual capacity of a battery of the wireless power receiver exceeding a minimum power threshold according to the received second power, determining to re-initialize the communication connection with the wireless power transmitter; transmitting a message including a time period required to complete at least one procedure for re-initializing the communication connection with the wireless power transmitter; and wirelessly receiving the second power from the wireless power transmitter while re-initializing the communication connection with the wireless power transmitter.