Abstract:
An image sensor includes a semiconductor substrate integrated with at least one first photo-sensing device configured to sense light in a blue wavelength region and at least one second photo-sensing device configured to sense light in a red wavelength region, a color filter layer on the semiconductor substrate and including a blue color filter configured to selectively absorb light in a blue wavelength region and a red color filter configured to selectively absorb light in a red wavelength region, and a third photo-sensing device on the color filter layer and including a pair of electrodes facing each other, and a photoactive layer between the pair of electrodes and configured to selectively absorb light in a green wavelength region.
Abstract:
A compound is selected from the compound represented by Chemical Formula 1A, the compound represented by Chemical Formula 1B, and a mixture thereof.
Abstract:
An organic photoelectronic device includes a first electrode and a second electrode facing each other, and an active layer between the first electrode and the second electrode, the active layer including a heterojunction of a p-type semiconductor and an n-type semiconductor, the p-type semiconductor including a compound represented by Chemical Formula 1.
Abstract:
An image sensor includes a semiconductor substrate integrated with at least one first photo-sensing device configured to sense light in a blue wavelength region and at least one second photo-sensing device configured to sense light in a red wavelength region, a color filter layer on the semiconductor substrate and including a blue color filter configured to selectively absorb light in a blue wavelength region and a red color filter configured to selectively absorb light in a red wavelength region, and a third photo-sensing device on the color filter layer and including a pair of electrodes facing each other, and a photoactive layer between the pair of electrodes and configured to selectively absorb light in a green wavelength region.
Abstract:
A display device according to example embodiments includes a first thin film transistor on a substrate, a second thin film transistor on the first thin film transistor, and a display unit electrically connected to at least one of the first thin film transistor and the second thin film transistor.
Abstract:
An OLED display panel may include a substrate, an OLED light emitter on the substrate and configured to emit light, and a visible light sensor on the substrate and configured to detect at least a portion of the emitted light based on reflection of the portion of the emitted light from a recognition target. The visible light sensor is in a non-light emitting region adjacent to the OLED light emitter so as to be horizontally aligned with the OLED light emitter in a horizontal direction extending parallel to an upper surface of the substrate, or between the substrate and a non-light emitting region adjacent to the OLED light emitter such that the visible light sensor is vertically aligned with the non-light emitting region in a vertical direction extending perpendicular to the upper surface of the substrate.
Abstract:
An image sensor may include a photodiode within a semiconductor substrate and configured to sense light in an infrared wavelength spectrum of light, a photoelectric conversion device on the semiconductor substrate and configured to sense light in a visible wavelength spectrum of light, and a filtering element configured to selectively transmit at least a portion of the infrared wavelength spectrum of light and the visible wavelength spectrum of light. The filtering element may include a plurality of color filters on the photoelectric conversion device. The photoelectric conversion device may include a pair of electrodes facing each other and a photoelectric conversion layer between the pair of electrodes and configured to selectively absorb light in a visible wavelength spectrum of light. The filtering element may be between the semiconductor substrate and the photoelectric conversion device and may selectively absorb the infrared light and selectively transmit the visible light.
Abstract:
A combination sensor may include a first infrared light sensor and a second infrared light sensor. The first infrared light sensor may be configured to sense light in a first wavelength within an infrared wavelength spectrum. The second infrared light sensor may be configured to sense light in a second wavelength that is different from the first wavelength within the infrared wavelength spectrum. The first infrared light sensor and the second infrared light sensor may be stacked in relation to each other.
Abstract:
An image sensor may include a photoelectric device configured to selectively absorb light associated with a first color of three primary colors, a semiconductor substrate that is stacked with the photoelectric device and includes first and second photo-sensing devices configured to sense light associated with second and third colors of three primary colors. The first and second photo-sensing devices may have different thicknesses, different depths from a surface of the semiconductor substrate, or different thicknesses and different depths from the surface of the semiconductor substrate. At least one part of a thickness area of the first photo-sensing device may overlap at least one part of a thickness area of the second photo-sensing device in a parallel direction extending substantially parallel to the surface of the semiconductor substrate.
Abstract:
A photoelectric device includes a first photoelectric conversion layer including a heterojunction that includes a first p-type semiconductor and a first n-type semiconductor, a second photoelectric conversion layer on the first photoelectric conversion layer and including a heterojunction that includes a second p-type semiconductor and a second n-type semiconductor. A peak absorption wavelength (λmax1) of the first photoelectric conversion layer and a peak absorption wavelength (λmax2) of the second photoelectric conversion layer are included in a common wavelength spectrum of light that is one wavelength spectrum of light of a red wavelength spectrum of light, a green wavelength spectrum of light, a blue wavelength spectrum of light, a near infrared wavelength spectrum of light, or an ultraviolet wavelength spectrum of light, and a light-absorption full width at half maximum (FWHM) of the second photoelectric conversion layer is narrower than an FWHM of the first photoelectric conversion layer.