Abstract:
An X-ray imaging apparatus is provided. The X-ray imaging apparatus includes an X-ray generator configured to radiate X-rays onto an object having a region of interest (ROI) and a non-ROI, a filter configured to adjust an X-ray dose of the X-rays incident on the ROI and the non-ROI, an X-ray detector configured to detect the X-rays transmitted through the object and convert the X-rays into X-ray data, and an image processing unit configured to obtain a frame image using the X-ray data, register the obtained frame image to a previous frame image, synthesize the frame image and the previous frame image, and generate a reconstructed frame image.
Abstract:
An X-ray imaging apparatus includes an X-ray generator configured to transmit X-rays to an object, an X-ray detector configured to detect the X-rays transmitted through the object and convert the detected X-rays into electrical signals, a gantry in which the X-ray generator and the X-ray detector are installed so as to be opposite to each other, the gantry being rotatable about a bore, a controller configured to control a rotation of the gantry during bio-signal cycles of the object so that the gantry is rotated from different start positions whenever one of the bio-signal cycles is started, and an image processor configured to generate a 4D image of the object by applying a prior image-based compressed sensing image reconstruction algorithm to plural 2D projection images acquired from the electrical signals generated by converting the X-rays detected during the rotation of the gantry.
Abstract:
Disclosed herein is an X-ray imaging apparatus including: an X-ray generator including a first X-ray source configured to irradiate a first X-ray onto an object, and at least one second X-ray source spaced apart from the first X-ray source and configured to irradiate at least one second X-ray onto the object; an X-ray detector configured to detect the first X-ray which has propagated through the object and the at least one second X-ray which has propagated through the object; and an image processor configured to produce a first X-ray image of the object based on the detected first X-ray, to produce at least one second X-ray image of the object based on the detected at least one second X-ray, and to produce a stereoscopic image of the object based on the first X-ray image and the at least one second X-ray image.
Abstract:
The radiographic image generation method includes acquiring a plurality of radiographic images corresponding to the number of radiation dose portions by emitting radiation to an object by dividing a radiation exposure dose into the radiation dose portions, and by detecting the emitted radiation, and matching the plurality of acquired radiographic images.
Abstract:
Disclosed herein are an X-ray imaging apparatus capable of reducing a dose of radiation, and a control method thereof. The X-ray imaging apparatus includes: a gantry configured to rotate around an object, the object being placed on a table that is configured to be transported into a bore; a depth camera provided on the gantry, the depth camera configured to acquire a depth image of the object; an image processor configured to acquire thickness information of the object from the depth image of the object; and a controller configured to set a dose of X-rays to be irradiated to the object according to the thickness information of the object.
Abstract:
Provided is a medical imaging apparatus including a scanner configured to acquire projection data of an object, a three dimensional (3D) recovery module configured to recover a volume of the object based on the projection data, a two dimensional (2D) image generator configured to generate a 2D image of the object based on the volume of the object, a 3D image generator configure to generate a 3D image of the object based on the volume of the object, a 2D display configured to display the 2D image of the object, and a 3D display configured to display the 3D image of the object.
Abstract:
An X-ray imaging apparatus includes an X-ray generator configured to generate and emit X-rays, an X-ray detector configured to detect the X-rays and count a number of photons having energy equal to or greater than threshold energy per pixel among photons contained in the detected X-rays, a map generator configured to extract corrected threshold energy corresponding to target threshold energy mapped to each pixel, and a data correction unit configured to calculate corrected X-ray data corresponding to the corrected threshold energy per pixel from a plurality of X-ray data acquired based on a plurality of images of a target object obtained by using a plurality of approximate energies equal or approximate to the target threshold energy as threshold energy of the X-ray detector.
Abstract:
An apparatus for acquiring a MEX image includes an X-ray source to generate and irradiate a multi-peak X-ray spectrum onto an object, and an energy identifying detector to obtain a MEX generated when the irradiated multi-peak X-ray spectrum passes through an object.
Abstract:
An apparatus and method for acquiring an optimal MEX image may include an X-ray source to generate an X-ray and to irradiate the X-ray, an energy identification detector to acquire a MEX image that is generated when the irradiated X-ray penetrates an object, and an optimal MEX processor to generate an optimal MEX parameter based on a characteristic of the object and to control at least one of the X-ray source and the energy identification detector based on the generated optimal MEX parameter.
Abstract:
An X-ray imaging method and apparatus are provided for forming an X-ray image having reduced noise and showing a clear boundary of a lesion region. The X-ray imaging method includes performing a first main shot which irradiates an object in a compressed state by using X-rays at least once to obtain a single two-dimensional image, performing a second main shot which irradiates the object by using X-rays at different positions to obtain a plurality of two-dimensional images, and forming a two-dimensional final image by removing a lesion region having a unclear boundary from each of the plurality of two-dimensional images and substituting a lesion region of the single two-dimensional image into an area which corresponds to the removed lesion region.