Abstract:
A multi-layered information recording medium comprising a plurality of recording layers, a user data area for recording user data, provided in at least two of the plurality of recording layers, and a defect list storing area for storing a defect list. When at least one defective area is detected in the user data area, the defect list is used to manage the at least one defective area.
Abstract:
An optical disc medium compares a track groove, along which main information is recorded. The track groove is divided into a plurality of blocks. The plurality of blocks each include a plurality of frames. The plurality of frames each include one shape of wobbles indicating sub information, among a plurality of prescribed shapes of wobbles. The plurality of blocks each have address information. The address information is represented by a string of at least one piece of sub information represented by the shape of wobbles of at least one of the plurality of frames.
Abstract:
An optical disc medium compares a track groove, along which main information is recorded. The track groove is divided into a plurality of blocks. The plurality of blocks each include a plurality of frames. The plurality of frames each include one shape of wobbles indicating sub information, among a plurality of prescribed shapes of wobbles. The plurality of blocks each have address information. The address information is represented by a string of at least one piece of sub information represented by the shape of wobbles of at least one of the plurality of frames.
Abstract:
In a recording medium which is circular and has first and second recording layers, the first and second recording layers each include one or more first tracks extending concentrically or spirally and one or more second tracks extending concentrically or spirally, each of the one or more first tracks and the one or more second tracks includes a plurality of first sectors and a plurality of second sectors, each of the plurality of first sectors includes first and second regions, each of the plurality of second sectors includes third and fourth regions, first and second grooves are formed in each of the second and fourth regions, the first and second grooves extending concentrically or spirally and oscillating sinusoidally, oscillation of the first groove has a first oscillation characteristic at a first prescribed position in the second region, oscillation of the second groove has a second oscillation characteristic at a second prescribed position in the fourth region, and the first and second oscillation characteristics are different from each other.
Abstract:
A method of recording data optically to an optical disk having a plurality of sectors, in which each sector has a region to be recorded with data, the data is recorded in units of blocks, and the block includes a predetermined number of sectors and is a data unit including error correction codes. In recording data related to a content by dividing and recording the data in a plurality of sectors continuously, dummy data to be used for extracting a clock in PLL for data reproduction is recorded on a region adjacent before a sector from which data recording is started. The data related to the contents is recorded on sectors following the region recorded with the dummy data.
Abstract:
An information recording medium is provided, which comprises a plurality of recording layers and a first disc information area for storing parameters relating to access to the plurality of recording layers and formats relating to the plurality of recording layer. The first disc information area is provided in a first recording layer which is one of the plurality of recording layers.
Abstract:
The invention provides an optical disc device and a method of determining an optimal laser power for data recording by trial recording before recording actual user data even when there are fingerprints in the test track area for the trial recording. The BER (Byte Error Rate) is detected in each recorded sector. If the BER is less than a particular threshold value, the sector is taken as OK (good). Otherwise the sector is taken as NG (no good). While the peak power level is gradually changed or decreased from the power level at which half or more of the plural reproduced sectors are OK, a boundary peak power at which half or more of the sectors become NG is found. Based on the found boundary power, an amount of the optimal peak power is determined.
Abstract:
A tilt detection device detects an inclination (tilt angle) of the recording surface of an optical disc with respect to the optical axis of the light beam. The device has an optical head for directing a light beam onto the optical disc, a photo detector for receiving light reflected from the optical disc, and a tilt detector for detecting inclination of the recording surface of the optical disc with respect to the optical axis of the light beam by a signal output from the photo detector.
Abstract:
The present invention is aimed at providing an optical disk, an optical disk device, and an optical disk reproduction method, for allowing for stable and efficient reading of address information. The optical disk includes a plurality of tracks each divided into a plurality of recording sectors. Each of the recording sectors includes a header region. The header region includes address information for identifying the position of the corresponding recording sector and address synchronous information for identifying the recording position of the address information for bit synchronization. The address information has been modulated using a run length limit code of a maximum inversion interval of Tmax bits (Tmax is a natural number), and the address synchronous information includes two patterns of which inversion interval is (Tmax″+3) bits or more, so that the reproduced signal of the address synchronous information is distinguished from the reproduced signal of other information.
Abstract:
The optical disk of this invention includes a read-only area in which a plurality of read-only tracks are formed and a rewritable area in which a plurality of rewritable tracks are formed, wherein each of the plurality of read-only tracks is divided into a plurality of first sectors, a signal is prerecorded in at least one of the plurality of first sectors under a predetermined reproduction format, each of the plurality of rewritable tracks is divided into a plurality of second sectors, a signal is recordable in at least one of the plurality of second sectors under a predetermined recording format including the predetermined reproduction format, and the read-only area is located on an inner portion of the optical disk, while the rewritable area is located on an outer portion of the optical disk.