Abstract:
A Bayesian two-color image demosaicer and method for processing a digital color image to demosaic the image in such a way as to reduce image artifacts. The method and system are an improvement on and an enhancement to previous demosaicing techniques. A preliminary demosaicing pass is performed on the image to assign each pixel a fully specified RGB triple color value. The final color value of pixel in the processed image is restricted to be a linear combination of two colors. Fully-specified RGB triple color values for each pixel in an image used to find two clusters represented favored two colors. The amount of contribution from these favored two colors on the final color value then is determined. The method and system also can process multiple images to improve the demosaicing results. When using multiple images, sampling can be performed at a finer resolution, known as super resolution.
Abstract:
An automatic purple fringing removal system and method for automatically eliminating purple-fringed regions from high-resolution images. The technique is based on the observations that purple-fringing regions often are adjacent near-saturated regions, and that purple-fringed regions are regions in which the blue and red color intensities are substantially greater than the green color intensity. The automatic purple fringing removal system and method implements these two observations by automatically detecting a purple-fringed region in an image and then automatically correcting the region. Automatic detection is achieved by finding near-saturated regions and candidate regions, and then defining a purple-fringed region as a candidate region adjacent a near-saturated region. Automatic correction of a purple-fringed region is performed by replacing color pixels in the region with at least some fully monochrome pixels using a feathering process, a monochrome averaging process, or by setting the red and blue intensity values using the green intensity value.
Abstract:
A technique for estimating the optical flow between images of a scene and a segmentation of the images is presented. This involves first establishing an initial segmentation of the images and an initial optical flow estimate for each segment of each images and its neighboring image or images. A refined optical flow estimate is computed for each segment of each image from the initial segmentation of that image and the initial optical flow of the segments of that image. Next, the segmentation of each image is refined from the last-computed optical flow estimates for each segment of the image. This process can continue in an iterative manner by further refining the optical flow estimates for the images using their respective last-computed segmentation, followed by further refining the segmentation of each image using their respective last-computed optical flow estimates, until a prescribed number of iterations have been completed.
Abstract:
The illustrated and described embodiments describe techniques for capturing data that describes 3-dimensional (3-D) aspects of a face, transforming facial motion from one individual to another in a realistic manner, and modeling skin reflectance.
Abstract:
In the described embodiment, methods and systems for processing facial image data for use in animation are described. In one embodiment, a system is provided that illuminates a face with illumination that is sufficient to enable the simultaneous capture of both structure data, e.g. a range or depth map, and reflectance properties, e.g. the diffuse reflectance of a subject's face. This captured information can then be used for various facial animation operations, among which are included expression recognition and expression transformation.
Abstract:
A system and process for computing a 3D reconstruction of a scene from multiple images thereof, which is based on a color segmentation-based approach, is presented. First, each image is independently segmented. Second, an initial disparity space distribution (DSD) is computed for each segment, using the assumption that all pixels within a segment have the same disparity. Next, each segment's DSD is refined using neighboring segments and its projection into other images. The assumption that each segment has a single disparity is then relaxed during a disparity smoothing stage. The result is a disparity map for each image, which in turn can be used to compute a per pixel depth map if the reconstruction application calls for it.
Abstract:
A system and process for rendering and displaying an interactive viewpoint video is presented in which a user can watch a dynamic scene while manipulating (freezing, slowing down, or reversing) time and changing the viewpoint at will. The ability to interactively control viewpoint while watching a video is an exciting new application for image-based rendering. Because any intermediate view can be synthesized at any time, with the potential for space-time manipulation, this type of video has been dubbed interactive viewpoint video.
Abstract:
A system and process for generating a high dynamic range (HDR) image from a bracketed image sequence, even in the presence of scene or camera motion, is presented. This is accomplished by first selecting one of the images as a reference image. Then, each non-reference image is registered with another one of the images, including the reference image, which exhibits an exposure that is both closer to that of the reference image than the image under consideration and closest among the other images to the exposure of the image under consideration, to generate a flow field. The flow fields generated for the non-reference images not already registered with the reference image are concatenated to register each of them with the reference image. Each non-reference image is then warped using its associated flow field. The reference image and the warped images are combined to create a radiance map representing the HDR image.
Abstract:
The illustrated and described embodiments describe techniques for capturing data that describes 3-dimensional (3-D) aspects of a face, transforming facial motion from one individual to another in a realistic manner, and modeling skin reflectance.
Abstract:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.