Abstract:
At least some embodiments are directed to a light detection system comprising a photodiode, a transimpedance amplifier (TIA) having a differential output and a differential input coupled across the photodiode, a first bias current source coupled to an anode of the photodiode, and a second bias current source coupled to a cathode of the photodiode. The system also comprises a dynamic control logic coupled to the first and second bias current sources and configured to vary bias currents provided by the first and second bias current sources based on the differential output such that the photodiode is reverse-biased.
Abstract:
The disclosure provides a circuit that includes a charge sensitive amplifier (CSA) that generates an integrated signal in response to a current signal. An active comparator is coupled to the CSA. The active comparator receives the integrated signal and a primary reference voltage signal, and generates an event detect signal. A first delay element is coupled to the active comparator and provides a fixed delay to the event detect signal to generate a convert signal. A discriminator system is coupled to the CSA. The discriminator system samples the integrated signal when activated by the convert signal.
Abstract:
Charge to voltage conversion integrator circuitry for data acquisition front-end and other applications to provide a single-ended up a voltage using an input bias capacitance and a switching circuit to selectively place an input transistor in a negative feedback configuration in a first mode to charge the input bias capacitance to a calibration voltage for compensating integrator amplifier bias circuitry, with the switching circuit connecting an input node and the input bias capacitance in a second mode to integrate the input current signal across a feedback capacitance to provide a single-ended output voltage with the input bias capacitance maintaining a zero voltage at the input node.
Abstract:
DC offset correction is provided with low frequency support. A first input terminal for receiving an input signal is selectively coupled to a resistance and a capacitor that are series coupled between the first input terminal and a corresponding output terminal. In a calibration phase, the series resistance is coupled between the input terminal and the capacitor and an average voltage level of the input is stored on capacitor. In a signal processing phase, the charged capacitor is coupled in series between the input terminal and the output terminal while the resistance is bypassed. The output signal obtained contains the high and low frequency components of the input signal, while the DC offset in the input signal is removed from the output signal. A differential circuit and methods are disclosed. Additional embodiments are disclosed.