摘要:
A non-aqueous secondary battery comprising a negative electrode made of an active negative electrode material capable of intercalating/deintercalating lithium ion, a positive electrode made of spinnel type lithium manganese oxide as a main active positive electrode material and an electrolyte containing a non-aqueous solvent is characterized in that said positive electrode comprises lithium cobalt oxide in admixture with spinnel type lithium manganese oxide having crystal lattices partially substituted by magnesium or aluminum and said non-aqueous solvent comprises vinylene carbonate incorporated therein.
摘要:
A nonaqueous electrolyte secondary battery is prevented from decreasing the remaining capacity and returned capacity at the time of continuous charge at high voltages and high temperatures. The battery has positive and negative electrodes, and a nonaqueous electrolytic solution containing ethylene carbonate and fluoroethylene carbonate as a solvent. The positive electrode contains a positive-electrode active material with the fine particles of a rare earth element compound deposited on its surface in a dispersed state.
摘要:
A polymer for bonding the positive electrode and negative electrode of a lithium secondary battery, which includes a positive electrode, a negative electrode and an electrolyte solution, with a separator arranged between the positive electrode and the negative electrode. The polymer contains a cationically polymerizable monomer unit (A), a monomer unit (B) providing affinity to the electrolyte solution, a monomer unit (C) providing poor solubility to the electrolyte solution, and a monomer unit (D) containing an anionic or nonionic hydrophilic group. This polymer can be obtained through radical polymerization such as emulsion polymerization or suspension polymerization, and is characterized by having a dissolution rate into a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) [EC:DEC=5:5 (weight ratio)] of not more than 10% by weight.
摘要:
A non-aqueous electrolyte secondary battery has a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, a non-aqueous electrolyte, a separator interposed between the positive electrode and the negative electrode, and a porous layer provided on a surface of the positive electrode. The porous layer contains titania particles, a dispersing agent, and an aqueous binder. The dispersing agent includes silica having an average particle size of less than 100 nm and less than that of the titania particles.
摘要:
A positive electrode for non-aqueous electrolyte battery includes a positive electrode active material layer containing at least a positive electrode active material and a binder and a coating layer containing a polymer provided on the positive electrode active material layer, wherein the polymer has a block chain A composed of a random copolymer containing a repeating unit (I) represented by formula (I) and a repeating unit (II) represented by formula (II) and a block chain B containing a repeating unit (III) represented by formula (III) wherein R1-R3, R4a, R4b, R5-R13 are as defined herein.
摘要:
A positive electrode for non-aqueous electrolyte battery includes a positive electrode active material layer containing at least a positive electrode active material and a binder and a coating layer containing a polymer provided on the positive electrode active material layer, wherein the polymer has a block chain A composed of a random copolymer containing a repeating unit (I) represented by formula (I) and a repeating unit (II) represented by formula (II) and a block chain B containing a repeating unit (III) represented by formula (III) wherein R1-R3, R4a, R4b, R5-R13 are as defined herein.
摘要:
A nonaqueous electrolyte secondary battery is prevented from decreasing the remaining capacity and returned capacity at the time of continuous charge at high voltages and high temperatures. The battery has positive and negative electrodes, and a nonaqueous electrolytic solution containing ethylene carbonate and fluoroethylene carbonate as a solvent. The positive electrode contains a positive-electrode active material with the fine particles of a rare earth element compound deposited on its surface in a dispersed state.
摘要:
A nonaqueous electrolyte secondary battery using electrodes including a mixture layer formed on a current collector by using an aqueous slurry is provided to enable efficient battery production, have a high adhesion strength in the electrode and enable improved battery performance. The nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a nonaqueous electrolyte, wherein at least one of the positive and negative electrodes is an electrode obtained by: forming a precoat layer 6 made of a latex binder and an aqueous dispersant on a current collector 1; forming a mixture layer 2 on the precoat layer 6 by applying an aqueous slurry containing an active material, a latex binder and an aqueous dispersant to the precoat layer 6; and drying the mixture layer 2.
摘要:
The present invention provides a non-aqueous electrolyte battery, etc. that can reduce the manufacturing cost of the battery, meet the need for increased battery capacity, and at the same time improve various battery characteristics, such as high-rate charge-discharge capability, high-temperature cycle performance, and storage performance.A porous layer (32) is disposed between a separator and a negative electrode (13). The porous layer has a non-aqueous electrolyte permeability higher than that in TD of the separator. An excess electrolyte is contained in at least a portion of an internal space of a battery case that is other than an electrode assembly, and the excess electrolyte and at least a portion of the porous layer are in contact with each other.
摘要:
A polymer for bonding the positive electrode and negative electrode of a lithium secondary battery, which includes a positive electrode, a negative electrode and an electrolyte solution, with a separator arranged between the positive electrode and the negative electrode. The polymer contains a cationically polymerizable monomer unit (A), a monomer unit (B) providing affinity to the electrolyte solution, a monomer unit (C) providing poor solubility to the electrolyte solution, and a monomer unit (D) containing an anionic or nonionic hydrophilic group. This polymer can be obtained through radical polymerization such as emulsion polymerization or suspension polymerization, and is characterized by having a dissolution rate into a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC)[EC:DEC=5:5 (weight ratio)] of not more than 10% by weight.