摘要:
A surface acoustic wave device includes a piezoelectric element, an IDT electrode formed on the piezoelectric element for exciting a principal wave, a reflection film formed on the piezoelectric element having a higher reflectivity than the reflectivity of the piezoelectric element in a visible light wavelength region, and a light permeable dielectric layer formed on the piezoelectric element, at least a part of the IDT electrode, and the reflection film. Accordingly, when measuring the film thickness of the light permeable dielectric layer by light interference method, the reflected light from the reflection film having a higher reflectivity than the reflectivity of the piezoelectric element in a visible light wavelength region can be utilized, so that the film thickness can be measured more accurately.
摘要:
The present invention provides a surface acoustic wave resonator capable of improving the leak of a surface acoustic wave in the transverse direction and reducing the spurious and having superior characteristics. In a surface acoustic wave filter according to the present invention, an interdigital transducer electrode and reflector electrodes are formed on a piezoelectric substrate, and a SiO2 thin film is further formed thereon. The interdigital transducer electrode includes a bus-bar electrode region, a dummy electrode region and a finger overlap region, and the SiO2 thin film is removed from upper sections of the bus-bar electrode regions in the interdigital transducer electrode.
摘要:
A surface acoustic wave device includes a substrate including lithium niobate; a IDT being provided on an upper surface of the substrate and including a plurality of electrode fingers; and a protective film covering the IDT and having an uneven shape on an upper surface thereof. When a pitch width of one pitch of the IDT is p, a width of one of the electrode fingers is p1, a width between the electrode fingers is p2, and a thickness of the IDT is h, following relations are satisfied, p1+p2=p, and h/(2×p)≧4.5%. With this configuration, an appropriate reflection characteristic is realized, and the surface acoustic wave device having excellent temperature coefficient of frequency and electrical characteristic can be obtained.
摘要:
A plurality of surface acoustic wave resonators including a comb electrode and a grating reflector are coupled on a piezoelectric substrate. Dielectric film is formed on the surface of at least one surface acoustic wave resonator. No dielectric film is formed on the surface of at least one other surface acoustic wave resonator. Thus, a SAW filter where the insertion loss into a pass band is small, the steepness is sufficient, and the band is wide can be obtained.
摘要:
A plurality of surface acoustic wave resonators (15through 20) including a comb electrode and a grating reflector are coupled on piezoelectric substrate (12). Dielectric film (14) is formed on the surface of at least one surface acoustic wave resonator, of surface acoustic wave resonators (15 through 20). No dielectric film (14) is formed on the surface of at least another surface acoustic wave resonator. Thus, an SAW filter where the insertion loss into a band is small, the steepness is sufficient, and the band is wide can be obtained.
摘要:
A SAW filter includes a piezoelectric body, an IDT electrode on the piezoelectric body, and signal wiring electrically connected to the IDT electrode. The signal wiring has a thickness not less than a skin depth specified based on the frequency of a signal passing through the signal wiring and the electrical conductivity of the signal wiring. As a result, the signal wiring has low propagation loss of the signal passing through it, so that the SAW filter has excellent transmission characteristics.
摘要:
A SAW filter includes a piezoelectric body, an IDT electrode on the piezoelectric body, and signal wiring electrically connected to the IDT electrode. The signal wiring has a thickness not less than a skin depth specified based on the frequency of a signal passing through the signal wiring and the electrical conductivity of the signal wiring. As a result, the signal wiring has low propagation loss of the signal passing through it, so that the SAW filter has excellent transmission characteristics.
摘要:
A surface acoustic wave filter including a piezoelectric substrate, IDT electrodes which are formed on the piezoelectric substrate and are connected to balanced type terminals. Further, IDT electrodes are formed on the piezoelectric substrate and are connected to an unbalanced type terminal, connection electrodes of connecting the IDT electrodes, the IDT electrodes IDT electrodes to the balanced type terminals or the unbalanced type terminal, and a dielectric thin film formed between the piezoelectric substrate and the IDT electrodes, the IDT electrodes, the connection electrodes.
摘要:
A surface acoustic wave filter including a piezoelectric substrate, IDT electrodes which are formed on the piezoelectric substrate and are connected to balanced type terminals. Further, IDT electrodes are formed on the piezoelectric substrate and are connected to an unbalanced type terminal, connection electrodes of connecting the IDT electrodes, the IDT electrodes IDT electrodes to the balanced type terminals or the unbalanced type terminal, and a dielectric thin film formed between the piezoelectric substrate and the IDT electrodes, the IDT electrodes, the connection electrodes.
摘要:
An elastic-wave filter device includes a first piezoelectric substrate, a second piezoelectric substrate, a first pillar-like wiring electrode, and a second pillar-like wiring electrode. The first and second substrates have a first and a second IDT electrodes on their top faces respectively. A lateral face of the second substrate confronts a lateral face of the first substrate. The first pillar-like electrode and the second pillar-like electrode are formed above the first and the second substrates respectively, and are electrically connected to the first and the second IDT electrodes respectively. The first substrate is thicker than the second substrate. A distance between a plane including the top face of the first substrate and a plane including the top face of the second substrate is smaller than a distance between a plane including an underside of the first substrate and a plane including an underside of the second substrate.