摘要:
An in vitro method is for diagnosing a tumor disease in a patient. In at least one embodiment, the method includes: (i) determining an IVD marker or an IVD marker panel in at least one biological sample of a patient, wherein the IVD marker has a high sensitivity to the tumor disease, (ii) determining the proportion of patients tested positive due to an adapted reference range of the IVD marker/IVD marker panel, wherein the reference range was adapted such that the number of individuals with false negative tests, the number of individuals with false positive tests and the number of individuals ultimately needing to be subjected to imaging diagnostics to clarify false negative and false positive results are balanced in respect of one another such that tumor screening can be carried out, possibly: (iii) deciding to carry out an imaging method specific to the respective tumor disease for clarifying possible false negative and/or false positive IVD results, or (iv) repeating stages (i) and (ii) after a defined time interval, or (v) carrying out an imaging method for imaging the tumor.
摘要:
An inventive principle of at least one embodiment is based on linking an iron-binding functionality in the form of a bacterial iron-binding protein to a binding element which specifically recognizes a biological structure, in order to increase a local detectable increase in the concentration of the contrast medium. In at least one embodiment of the invention, a magnetic resonance contrast medium is provided which is capable of binding by way of a binding element to a biological structure in the body of a mammal, the binding element including an isolated polypeptide. The polypeptide includes a first amino acid sequence of a bacterial iron-binding protein or a derivative thereof, wherein the bacterial iron-binding protein or said derivative thereof has an iron-binding activity. In at least one embodiment, the binding element can bind a protein. In at least one embodiment, the binding element can have a ligand for a cellular membrane protein, a ligand for a cellular glycoprotein, an antibody or an antigen-binding fragment of an antibody and/or can bind a tumor antigen.
摘要:
A biosensor includes an analysis unit and a reader device for detecting an analyte. In at least one embodiment, the analysis unit includes a quartz oscillator on whose surface capture molecules, which bind specifically to the analyte, are immobilized; as well as a transponder to transmit information, regarding whether and/or how many analyte molecules have bound to the capture molecules, to the reader device.
摘要:
We present, in exemplary embodiments of the present invention, a system combining anatomical imaging technologies (e.g., MR) with optical technologies. The system can be used for a variety of applications, including, but not limited to, (1) cancer diagnosis and staging; (2) image guidance; and (3) radiation therapy planning. Image guidance may include guiding a biopsy. For example, a prostatectomy potentially has severe side effects, such as impotence and incontinence. Thus, a histologically-confirmed diagnosis, such as one provided from a biopsy, may prevent unnecessary prostatectomy. Image guidance may also include guiding minimal invasive therapy, such as brachytherapy focused ultrasound. The present invention may be used to plan radiation therapy, for example, by detecting, and thus sparing, healthy tissue from radiation exposure.
摘要:
We present, in exemplary embodiments of the present invention, a system combining optical imaging technologies with anatomical imaging technologies (e.g., MR, ultrasound). The system can be used for a variety of applications, including, but not limited to, (1) cancer diagnosis and staging; (2) image guidance; and (3) radiation therapy planning. Image guidance may include guiding a biopsy. For example, a prostatectomy potentially has severe side effects, such as impotence and incontinence. Thus, a histologically-confirmed diagnosis, such as one provided from a biopsy, may prevent unnecessary prostatectomy. Image guidance may also include guiding minimal invasive therapy, such as brachytherapy focused ultrasound. The present invention may be used to plan radiation therapy, for example, by detecting, and thus sparing, healthy tissue from radiation exposure.