摘要:
A thin film magnetic head includes a magneto-resistance (MR) laminated body, a lower shield layer and an upper shield layer that face the first MR magnetic layer. The lower and upper shield layers respectively have first and second anti-parallel layers and first and second antiferromagnetic layers. An exchange coupling intensity relating to an antiferromagnetic coupling between the second anti-parallel layer and the second antiferromagnetic layer is greater in the peripheral area of a projection area than that of the projection area of the upper shield layer side end surface of the MR laminated body to the film surface's orthogonal direction.
摘要:
Provided is a surface plasmon resonating optical system emitting near-field light (NF-light) with a higher light density. The system comprises: a waveguide through which a light for exciting surface plasmon propagates; a plasmon generator that couples with the light in a surface plasmon mode and emits NF-light from its NF-light generating end surface; and a resonator mirror that reflects the excited surface plasmon, provided on the side of the plasmon generator opposite to the NF-light generating end surface. In the system, the excited surface plasmon can be amplified by using a resonator structure while reducing the length of the plasmon generator to reduce absorption of surface plasmon and prevent overheating of the plasmon generator.
摘要:
An optical waveguide includes a core and a clad. The core includes first to third propagation parts, and a coupling part that couples the first to third propagation parts together. The first propagation part has a first incidence end face on which part of incident light is incident, and a first emission part that emits first propagation light. The second propagation part has a second incidence end face on which another part of the incident light is incident, and a second emission part that emits second propagation light. In the coupling part, a first light wave resulting from the first propagation light and a second light wave resulting from the second propagation light occur, and the first and second light waves interfere with each other to generate third propagation light to be emitted from a third emission part. The third propagation part propagates the third propagation light.
摘要:
A thermally assisted magnetic head includes a magnetic pole that generates a writing magnetic field from an air bearing surface (ABS); a waveguide through which light propagates; and a plasmon generator generating near-field light from a near-field light generating end surface by coupling the light thereto in a surface plasmon mode. The magnetic pole includes a convex part protruding in a substantially V-shape along a light propagation direction of the waveguide. The plasmon generator includes a substantially V-shaped part contacting the convex part, and as seen from a side of the ABS, a thickness of the plasmon generator in a direction perpendicular to convex part contacting sides gradually increases from an end in a direction away from the waveguide, the convex part contacting sides being linear sides that form the substantially V-shaped part of the plasmon generator and contacting the convex part.
摘要:
A first shield portion located below an MR stack includes a first main shield layer, a first antiferromagnetic layer, and a first magnetization controlling layer including a first ferromagnetic layer exchange-coupled to the first antiferromagnetic layer. A second shield portion located on the MR stack includes a second main shield layer, a second antiferromagnetic layer, and a second magnetization controlling layer including a second ferromagnetic layer exchange-coupled to the second antiferromagnetic layer. The MR stack includes two free layers magnetically coupled to the two magnetization controlling layers. Only one of the two magnetization controlling layers includes a third ferromagnetic layer that is antiferromagnetically exchange-coupled to the first or second ferromagnetic layer through a nonmagnetic middle layer. The first shield portion includes an underlayer disposed on the first main shield layer, and the first antiferromagnetic layer is disposed on the underlayer.
摘要:
A plasmon generator has an outer surface including a propagation edge, and has a near-field light generating part lying at an end of the propagation edge and located in a medium facing surface. The propagation edge faces an evanescent light generating surface of a waveguide's core with a predetermined distance therebetween and extends in a direction perpendicular to the medium facing surface. The propagation edge is arc-shaped in a cross section parallel to the medium facing surface. The plasmon generator includes a shape changing portion in which a radius of curvature of the propagation edge in the cross section parallel to the medium facing surface continuously decreases with decreasing distance to the medium facing surface.
摘要:
An MR element includes a free layer having a direction of magnetization that changes in response to an external magnetic field, a pinned layer having a fixed direction of magnetization, and a spacer layer disposed between these layers. The spacer layer includes a first region, a second region and a third region that are each in the form of a layer and that are arranged in a direction intersecting the plane of each of the foregoing layers. The second region is sandwiched between the first region and the third region. The first region and the third region are each composed of an oxide semiconductor, and the second region includes at least a nonmagnetic conductor phase.
摘要:
A magnetoresistive device with CPP structure, comprising a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed with said nonmagnetic intermediate layer interposed between them, wherein each of said first and second ferromagnetic layers comprises a sensor area joining to the nonmagnetic intermediate layer and a magnetization direction control area that extends further rearward from the position of the rear end of said nonmagnetic intermediate layer; a magnetization direction control multilayer arrangement is interposed at an area where the magnetization direction control area for said first ferromagnetic layer is opposite to the magnetization direction control area for said second ferromagnetic layer to produce magnetizations of the said first and second ferromagnetic layers which are antiparallel with each other; and said sensor area is provided at both width direction ends with biasing layers working such that the mutually antiparallel magnetizations of said first and second ferromagnetic layers intersect in substantially orthogonal directions.
摘要:
A thin film magnetic head comprises an MR laminated body that has first and second magnetic layers, a nonmagnetic middle layer, and the first and second magnetic layers and the nonmagnetic middle layer are laminated to make contact with each other in respective order. First and second antiferromagnetic layers are provided with the first and second magnetic layers respectively. The first antiferromagnetic layer and/or the second antiferromagnetic layer contains a void part or a thin portion at least in a portion of the projection area toward the orthogonal direction to the film surface of the MR laminated body.
摘要:
The invention provides a magnetoresistive device of the CPP (current perpendicular to plane) structure, comprising a magnetoresistive unit, and a first, substantially soft magnetic shield layer positioned below and a second, substantially soft magnetic shield layer positioned above, which are located and formed such that the magnetoresistive effect is sandwiched between them from above and below, with a sense current applied in the stacking direction. The magnetoresistive unit comprises a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed such that said nonmagnetic intermediate layer is sandwiched between them. At least one of the first shield layer positioned below and the second shield layer positioned above is configured in a framework form having a planar shape (X-Y plane) defined by the width and length directions of the device. The framework has a front frame-constituting portion located on a medium opposite plane side in front and near where the magnetoresistive unit is positioned, and any other frame portion. The any other frame portion partially comprises a combination of a nonmagnetic gap layer with a bias magnetic field-applying layer. The bias magnetic field-applying layer is constructed by repeating the stacking of a multilayer unit at least twice or up to 50 times, wherein the multilayer unit comprises a nonmagnetic underlay layer and a high-coercive material layer. The nonmagnetic gap layer is designed and located such that a magnetic flux given out of the bias magnetic field-applying layer is efficiently sent out to the front frame-constituting portion. The combination of the nonmagnetic gap layer with the bias magnetic field-applying layer forms a closed magnetic path with a magnetic flux going all the way around the framework, and turns the magnetization of the front frame-constituting portion into a single domain. It is thus possible to make the domain control of the shield layers much more stable, achieve remarkable improvements in resistance to an external magnetic field, and make the operation of the device much more reliable.