Abstract:
One embodiment of the system disclosed herein facilitates reduction of latency associated with accessing content of a memory page that has been swapped out by a guest operating system in a virtualized computer system. During operation, a hypervisor detects an I/O write command issued by the guest operating system at a swap location within the guest operating system's swap file and records the swap location. The hypervisor then prefetches contents of a page stored at the swap location within the guest operating system's swap file into a prefetch cache in host machine memory. Subsequently, the hypervisor detects an I/O read command issued by the guest operating system at the swap location within the swap file. In response, the hypervisor provides contents of the page to the guest operating system from the prefetch cache, thereby avoiding accessing the guest operating system's swap file.
Abstract:
Techniques for handling inheritance of disk state when forking virtual machines (VMs) are provided. In one embodiment, a computer system can receive a request to fork a child VM from a parent VM. In response, the computer system can take a disk snapshot of the parent VM, where the disk snapshot results in a child disk for the child VM, where the child disk is a delta disk that points to a parent disk of the parent VM, and where the parent disk serves as the parent VM's current running point. The computer system can then determine whether the parent disk is a delta disk. If so, the computer system can copy the content of the parent disk to the child disk, traverse a disk hierarchy associated with the parent disk to identify a base disk above the parent disk in the hierarchy, and cause the child disk to point directly to the base disk.
Abstract:
Embodiments support instant forking of virtual machines (VMs) and state customization. A computing device initiates execution of a first group of services (e.g., identity-independent) in a first VM. A second VM is instantiated from the first VM. The second VM shares memory and storage with the first VM. The computing device customizes the second VM based on configuration data associated with the second VM. A second group of services (e.g., identity-dependent) starts executing on the second VM after configuring the identity of the second VM. Customizing the second VM includes configuring one or more identities of the second VM. In some embodiments, a domain identity is selected from a pool of previously-created identities and applied to the second VM, before bootup completes on the second VM.
Abstract:
System and computer-implemented method for managing multi-availability zone (AZ) clusters of host computers in a cloud computing environment automatically detects a degraded state of a first AZ in the cloud computing environment based on host failure events for host computers in a first cluster section of a multi-AZ cluster of host computers located in the first AZ and a recovered state of the first AZ based a successful scale-in operation of another multi-AZ cluster located partially in the first AZ. In response to the detection of the degraded state of the first AZ, a second cluster section of the multi-AZ cluster of host computers located in a second AZ is scaled out. In response to the detection of the recovered state of the first AZ, the second cluster section of the multi-AZ cluster of host computers located in the second AZ is scaled in.
Abstract:
Methods and devices for providing reserved failover capacity across a plurality of data centers are described herein. An exemplary method includes determining whether a management process is executing at a first data center corresponding to a first physical location. In accordance with a determination that the management process is not executing at the first data center corresponding to the first physical location a host is initiated at a second data center corresponding to a second physical location and the management process is executed on the initiated host at the second data center corresponding to the second physical location.
Abstract:
The present disclosure describes a technique for honoring virtual machine placement constraints established on a first host implemented on a virtualized computing environment by receiving a request to migrate one or more virtual machines from the first host to a second host and without violating the virtual machine placement constraints, identifying an architecture of the first host, provisioning a second host with an architecture compatible with that of the first host, adding the second host to the cluster of hosts, and migrating the one or more virtual machines from the first host to the second host.
Abstract:
The disclosure provides an approach for dynamically reprogramming network and network infrastructure in response to VM mobility. The approach provides a hypervisor layer that can observe changes in VM-host relationships and reprogram the associated network and network infrastructure to maintain network communication. The hypervisor layer notifies an elastic network interface of a new IP address to include within its whitelist in response to VM migration to that elastic network interface.
Abstract:
An example method of migrating a virtualized computing instance between source and destination virtualized computing systems includes executing a first migration workflow in the source virtualized computing system, where a host computer executing the virtualized computing instance is a source host in the first migration workflow and a first mobility agent simulates a destination host in the first migration workflow. The method further includes executing a second migration workflow in the destination virtualized computing system, where a second mobility agent in the destination virtualized computing system simulates a source host in the second migration workflow and a host computer in the destination virtualized computing system is a destination host in the second migration workflow. The method further includes transferring, during execution of the first and second migration workflows, migration data including the virtualized computing instance between the first mobility agent and the second mobility agent over a network.
Abstract:
Examples perform live migration of VMs from a source host to a destination host using destructive consistency breaking operations. The disclosure makes a record of a consistency group of VMs on storage at a source host as a fail-back in the event of failure. The source VMs are live migrated to the destination host, disregarding consistency during live migration, and potentially violating the recovery point objective. After live migration of all of the source VMs, consistency is automatically restored at the destination host and the live migration is declared a success.
Abstract:
In a computer-implemented method for augmented reality aided navigation to at least one physical device indicia corresponding to the at least one physical device supporting virtualization infrastructure is observed. Based on the observed indicia, navigational cues correlating to a location of the at least one physical device is generated. Navigational cues are displayed such that augmented reality aided navigation is provided to the at least one physical device.