METHODS AND SYSTEMS TO DETERMINE APPLICATION LICENSE COSTS IN A VIRTUALIZED DATA CENTER
    44.
    发明申请
    METHODS AND SYSTEMS TO DETERMINE APPLICATION LICENSE COSTS IN A VIRTUALIZED DATA CENTER 审中-公开
    确定虚拟化数据中心应用程序许可成本的方法和系统

    公开(公告)号:US20160371109A1

    公开(公告)日:2016-12-22

    申请号:US14822914

    申请日:2015-08-11

    Applicant: VMWARE, INC.

    CPC classification number: G06F9/45558 G06F2009/4557 G06Q30/04

    Abstract: Methods and systems to compute application license costs of a number of applications run on virtual machines of a virtualized data center are described. In one aspect, one or more of the virtual machines (“VMs”) that form the virtual data center are determined. Each VM is created from hardware components specifications of one or more application blueprints stored in a data-storage devices. The one or more blueprints are searched to determine the one more applications that run in each VM. For each VM, a total VM application licensing cost of the one or more applications is computed based on one or more of an application instance license cost, application socket license cost, and application core license of each of the one or more applications associated with each application.

    Abstract translation: 描述了计算在虚拟化数据中心的虚拟机上运行的多个应用程序的应用许可证成本的方法和系统。 在一个方面,确定形成虚拟数据中心的一个或多个虚拟机(“VM”)。 每个VM由存储在数据存储设备中的一个或多个应用程序蓝图的硬件组件规范创建。 搜索一个或多个蓝图以确定在每个VM中运行的一个以上应用程序。 对于每个VM,基于与每个VM相关联的一个或多个应用中的每一个的应用实例许可证成本,应用套接字许可证成本和应用核心许可证中的一个或多个来计算一个或多个应用的​​总VM应用许可成本 应用。

    Dynamic unit resource usage price calibrator for a virtual data center
    45.
    发明授权
    Dynamic unit resource usage price calibrator for a virtual data center 有权
    虚拟数据中心的动态单位资源使用价格校验器

    公开(公告)号:US09524516B2

    公开(公告)日:2016-12-20

    申请号:US14054863

    申请日:2013-10-16

    Applicant: VMWARE, INC.

    CPC classification number: G06Q30/0283 G06Q40/12

    Abstract: Techniques for performing dynamic cost per unit resource usage in a virtual data center are described. In one example embodiment, an initial unit resource usage price is received for the virtual data center for a first cycle. Further, capital expenditure (CAPEX) and operating expenditure (OPEX) information of the virtual data center of the first cycle is obtained. Furthermore, a target return on investment (ROI) for the virtual data center for a second cycle is received. A unit resource usage price is then computed for the second cycle using the received initial unit resource usage price for the first cycle and the CAPEX and OPEX information of the first cycle. The unit resource usage price is then dynamically calibrated for the second cycle using the computed unit resource usage price and the target ROI.

    Abstract translation: 描述用于在虚拟数据中心中执行每单位资源使用的动态成本的技术。 在一个示例实施例中,为第一周期的虚拟数据中心接收初始单位资源使用价格。 此外,获得了第一个周期的虚拟数据中心的资本支出(CAPEX)和运营支出(OPEX)信息。 此外,接收用于第二周期的虚拟数据中心的目标投资回报率(ROI)。 然后使用接收到的第一周期的初始单位资源使用价格和第一周期的CAPEX和OPEX信息来计算第二周期的单位资源使用价格。 然后,使用计算的单位资源使用价格和目标投资回报率,对第二周期动态校准单位资源使用价格。

    Method and system that anticipates deleterious virtual-machine state changes within a virtualization layer
    46.
    发明授权
    Method and system that anticipates deleterious virtual-machine state changes within a virtualization layer 有权
    预测虚拟化层内有害的虚拟机状态变化的方法和系统

    公开(公告)号:US09378044B1

    公开(公告)日:2016-06-28

    申请号:US14740284

    申请日:2015-06-16

    Applicant: VMWARE, INC.

    CPC classification number: G06F9/45558 G06F9/50 G06F9/5077 G06F2009/4557

    Abstract: The current document is directed to a machine-learning-based subsystem, included within a virtualization layer, that learns, over time, how to accurately predict operational characteristics for the virtual machines executing within the virtual execution environment provided by the virtualization layer that result from changes to the states of the virtual machines. When the virtualization layer receives requests that, if satisfied, would result in a change of the state of one or more virtual machines, the virtualization layer uses operational characteristics predicted by the machine-learning-based subsystem from virtual-machine resource-allocation states that would obtain by satisfying the requests. When the predicted operational characteristics are indicative of potential non-optimality, instability, or unpredictability of virtualized-computer-system operation, the virtualization layer anticipates a deleterious state change and undertakes preventative measures.

    Abstract translation: 当前文档针对的是一个包含在虚拟化层内的基于机器学习的子系统,随着时间的推移,它可以学习如何准确地预测由虚拟化层提供的虚拟执行环境中执行的虚拟机的操作特性, 更改虚拟机的状态。 当虚拟化层接收到如果满足将导致一个或多个虚拟机的状态的改变的请求时,虚拟化层使用由基于机器学习的子系统预测的操作特性,从虚拟机资源分配状态, 将通过满足请求获得。 当预测的操作特征指示虚拟化 - 计算机系统操作的潜在的非最优性,不稳定性或不可预测性时,虚拟化层预期有害的状态改变并采取预防措施。

Patent Agency Ranking