Abstract:
Methods and systems to compute cost efficiency of virtual machines (“VMs”) running in a private cloud are described. Methods and systems compute a cost efficiency value for each VM in the private cloud based on cost of the VM in the private cloud, cost of similar VMs in the private cloud, price of similar VM running in the public cloud, and the cost of similar VMs running in one or more private clouds in the same geographical area. When the cost efficiency of a VM is greater than a cost efficiency threshold, the methods generate an alert and recommendations for moving the VM to a lower cost public cloud.
Abstract:
Methods and systems to compute cost efficiency of virtual machines (“VMs”) running in a private cloud are described. Methods and systems compute a cost efficiency value for each VM in the private cloud based on cost of the VM in the private cloud, cost of similar VMs in the private cloud, price of similar VM running in the public cloud, and the cost of similar VMs running in one or more private clouds in the same geographical area. When the cost efficiency of a VM is greater than a cost efficiency threshold, the methods generate an alert and recommendations for moving the VM to a lower cost public cloud.
Abstract:
The current document is directed to methods and systems for efficiently executing OSL-virtualization containers within the execution environments provided by virtual machines that execute above traditional virtualization layers within large, virtualized, distributed computing systems. The currently disclosed methods and systems anticipate the need for additional virtual machines in order to meet anticipated demands for one or more computational resources by the containers. In addition, the methods and systems provision and launch virtual machines with computational-resource allocations that minimize overhead and computational-resource wastage. In one implementation, computational-resource utilization of ATMs and containers within the virtualized, distributed computer system are periodically monitored in order to estimate future demand for the computational resource and, when necessary, to launch additional virtual machines to meet the estimated future demand for the computational resource.
Abstract:
Methods and systems to compute application license costs of a number of applications run on virtual machines of a virtualized data center are described. In one aspect, one or more of the virtual machines (“VMs”) that form the virtual data center are determined. Each VM is created from hardware components specifications of one or more application blueprints stored in a data-storage devices. The one or more blueprints are searched to determine the one more applications that run in each VM. For each VM, a total VM application licensing cost of the one or more applications is computed based on one or more of an application instance license cost, application socket license cost, and application core license of each of the one or more applications associated with each application.
Abstract:
Techniques for performing dynamic cost per unit resource usage in a virtual data center are described. In one example embodiment, an initial unit resource usage price is received for the virtual data center for a first cycle. Further, capital expenditure (CAPEX) and operating expenditure (OPEX) information of the virtual data center of the first cycle is obtained. Furthermore, a target return on investment (ROI) for the virtual data center for a second cycle is received. A unit resource usage price is then computed for the second cycle using the received initial unit resource usage price for the first cycle and the CAPEX and OPEX information of the first cycle. The unit resource usage price is then dynamically calibrated for the second cycle using the computed unit resource usage price and the target ROI.
Abstract:
The current document is directed to a machine-learning-based subsystem, included within a virtualization layer, that learns, over time, how to accurately predict operational characteristics for the virtual machines executing within the virtual execution environment provided by the virtualization layer that result from changes to the states of the virtual machines. When the virtualization layer receives requests that, if satisfied, would result in a change of the state of one or more virtual machines, the virtualization layer uses operational characteristics predicted by the machine-learning-based subsystem from virtual-machine resource-allocation states that would obtain by satisfying the requests. When the predicted operational characteristics are indicative of potential non-optimality, instability, or unpredictability of virtualized-computer-system operation, the virtualization layer anticipates a deleterious state change and undertakes preventative measures.