Abstract:
A network device may receive, from a sending device, a message in a first messaging format en route to user equipment. The first messaging format may correspond to one of a 3GPP cellular network standard or a 3GPP2 cellular network standard. The network device may determine whether the user equipment is associated with the first messaging format or with a second messaging format. The second messaging format may correspond to one of the 3GPP cellular network standard or the 3GPP2 cellular network standard. The first messaging format and the second messaging format may be associated with different cellular network standards. The device may selectively provide the message in the first messaging format or the second messaging format based on whether the user equipment is associated with the first messaging format or the second messaging format. The device may transmit an acknowledgment message based on the first messaging format.
Abstract:
Systems and methods described herein provide improved access to wireless devices in Power Saving Mode (PSM) and extended Discontinuous Reception (eDRX) sleep. A mobility management entity (MME) receives a mobile-terminated (MT) short message service (SMS) paging request with a size parameter for a corresponding short message. The MME determines if the wireless device is sleeping in PSM or eDRX mode, and, if so, uses the size parameter to determine if criteria are met for local buffering by the MME. If local buffering criteria are met, the MME locally buffers the short message until a next wireless device wake-up time. The MME also receives and processes requests to implement non-standard wake-up times for individual wireless devices in PSM sleep.
Abstract:
A computer device may include a memory configured to store instructions and a processor configured to execute the instructions to receive a service request from a user equipment (UE) device via a wireless access network; identify a Short Message Service Inter-Working Function (SMS-IWF) device associated with the UE device; and determine that the identified SMS-IWF device is associated with a link failure. The processor may further be configured to instruct the UE device to detach based on determining that the identified SMS-IWF device is associated with a link failure; receive a re-attach request from the UE device, in response to instructing the UE device to detach; and assign a functioning SMS-IWF device to the UE device, in response to receiving the re-attach request.
Abstract:
A calling device may obtain a first calling security parameter by registering with a network and obtain a second calling security parameter in response to causing an application authentication architecture of the network to verify that that the calling device is authorized to access a network service corresponding to a communication application stored by the calling device. The calling device may communicate the first and second calling security parameters to a called device and receive first and second called security parameters from the called device in response to communicating the first and second calling security parameters. The calling device may generate a security key based on the first calling security parameter, the second calling security parameter, first called security parameter, and the second called security parameter, and use the security key to encrypt or decrypt communication between the calling device and the called device.
Abstract:
A system may be configured to identify that a user device is connected to a first radio access network (“RAN”), via a first technology; and to identify that the user device is capable of accessing a second RAN, via a second technology. The system may further be configured to instruct the user device to concurrently connect to the second RAN and the first RAN, send or receive a first type of traffic via the first RAN, and send or receive a second type of traffic via the second RAN.
Abstract:
Systems described herein use a group packet data network (PDN) to support communications from machine-type communications (MTC) devices on wireless networks. The systems assign a MTC device to a group with a group identifier, the group associating the MTC device, and other MTC devices, with a particular customer network; receive an attach request from the MTC device; retrieve, based on the attach request, the group identifier for the MTC device; configure a bearer path between the MTC device and the particular customer network, the bearer path including a group PDN that transports data packets from the MTC device, and the other MTC devices, between a serving gateway (SGW) and a PDN gateway (PGW); and send data packets from the MTC device over the group PDN.
Abstract:
A method, a device, and a non-transitory storage medium provide an emergency call support service in which a network device of a visited network obtains user profile data of a wireless device from a home network of the wireless device, and provides the user profile data to a location server of the visited network. The emergency call support service allows an emergency call, when initiated by a roaming subscriber of the wireless device via the visited network, to include the user profile data and be provided to a public safety access point.
Abstract:
A server device may receive a message from a first user device, the message being destined for a second user device; determine a call session control function (CSCF) server device associated with the second user device; and output, based on the determining, the message to the CSCF server device.
Abstract:
A system may be configured to identify that a user device is connected to a first radio access network (“RAN”), via a first technology; and to identify that the user device is capable of accessing a second RAN, via a second technology. The system may further be configured to instruct the user device to concurrently connect to the second RAN and the first RAN, send or receive a first type of traffic via the first RAN, and send or receive a second type of traffic via the second RAN.
Abstract:
A first device associated with an evolved packet core network receives a first update request from a second device associated with the evolved packet core network. The first update request is associated with a communication session previously provided between the first device and the second device, and the first update request is generated based on a voice/video request. The first device generates an update answer in response to the first update request, where the update answer includes a code requesting that the communication session be restored between the first device and the second device. The first device receives, based on the code, a second update request from the second device, where the second update request includes session information associated with the communication session. The first device restores, based on the session information, the communication session between the first device and the second device to create a restored communication session.