摘要:
To manage data flow in generating different signal formats for use in optical metrology, a project data object is created. A first option data object is created. The first option data object has a set of signal parameters. Different settings of the set of signal parameters correspond to different signal formats for diffraction signals. A version number is associated with the first option data object. The first option data object is linked with the project data object. At least a second option data object is created. The second option data object has a set of signal parameters. Different settings of the set of signal parameters correspond to different signal formats for diffraction signals. The set of signal parameters of the first option data object and the set of signal parameters of the second option data object are set differently. Another version number is associated with the second option data object. The second option data object is linked with the project data object. The project data object, the first option data object, and the second option data object are stored. The version numbers associated with the first option data object and the second option data object are stored. The link between the first option data object and the project data object is stored. The link between the second option data object and the project data object is stored.
摘要:
In allocating processing units of a computer system to generate simulated diffraction signals used in optical metrology, a request for a job to generate simulated diffraction signals using multiple processing units is obtained. A number of processing units requested for the job to generate simulated diffraction signals is then determined. A number of available processing units is determined. When the number of processing units requested is greater than the number of available processing units, a number of processing units is assigned to generate the simulated diffraction signals that is less than the number of processing units requested.
摘要:
A system for examining a patterned structure formed on a semiconductor wafer using an optical metrology model includes a first fabrication cluster, a metrology cluster, an optical metrology model optimizer, and a real time profile estimator. The first fabrication cluster configured to process a wafer, the wafer having a first patterned and a first unpatterned structure. The first patterned structure has underlying film thicknesses, critical dimension, and profile. The metrology cluster including one or more optical metrology devices coupled to the first fabrication cluster. The metrology cluster is configured to measure diffraction signals off the first patterned and the first unpatterned structure. The metrology model optimizer is configured to optimize an optical metrology model of the first patterned structure using one or more measured diffraction signals off the first patterned structure and with floating profile parameters, material refraction parameters, and metrology device parameters.
摘要:
To manage data flow in generating different signal formats for use in optical metrology, a project data object is created. A first option data object is created. The first option data object has a set of signal parameters. Different settings of the set of signal parameters correspond to different signal formats for diffraction signals. A version number is associated with the first option data object. The first option data object is linked with the project data object. At least a second option data object is created. The second option data object has a set of signal parameters. Different settings of the set of signal parameters correspond to different signal formats for diffraction signals. The set of signal parameters of the first option data object and the set of signal parameters of the second option data object are set differently. Another version number is associated with the second option data object. The second option data object is linked with the project data object. The project data object, the first option data object, and the second option data object are stored. The version numbers associated with the first option data object and the second option data object are stored. The link between the first option data object and the project data object is stored. The link between the second option data object and the project data object is stored.
摘要:
To examine a patterned structure formed on a semiconductor wafer using an optical metrology model, an optical metrology model is created for the patterned structure. The optical metrology model has profile parameters, material refraction parameters, and metrology device parameters. Ranges of values for the profile parameters, material refraction parameters, and metrology device parameters are defined. One or more measured diffraction signals of the patterned structure are obtained. The optical metrology model is optimized to obtain an optimized optical metrology model using the defined ranges of values defined and the one or more obtained measured diffraction signals of the patterned structure. For at least one parameter from amongst the material refraction parameters and the metrology device parameters, the at least one parameter is set to a fixed value within the range of values for the at least one parameter. At least one profile parameter of the patterned structure is determined using the optimized optical metrology model and the fixed value for the at least one parameter.
摘要:
Approaches for accurate neural network training for library-based critical dimension (CD) metrology are described. Approaches for fast neural network training for library-based CD metrology are also described.
摘要:
Metrology data from a semiconductor treatment system is transformed using multivariate analysis. In particular, a set of metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. One or more essential variables for the obtained set of metrology data is determined using multivariate analysis. A first metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. The first obtained metrology data is not one of the metrology data in the set of metrology data earlier obtained. The first metrology data is transformed into a second metrology data using the one or more of the determined essential variables.
摘要:
Metrology data from a semiconductor treatment system is transformed using multivariate analysis. In particular, a set of metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. One or more essential variables for the obtained set of metrology data is determined using multivariate analysis. A first metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. The first obtained metrology data is not one of the metrology data in the set of metrology data earlier obtained. The first metrology data is transformed into a second metrology data using the one or more of the determined essential variables.
摘要:
An optical metrology model is created for a patterned structure formed on a semiconductor wafer. The optical metrology model has profile parameters, material refraction parameters, and metrology device parameters. Ranges of values for the parameters are defined. One or more measured diffraction signals of the patterned structure are obtained. The optical metrology model is optimized to obtain an optimized optical metrology model using the defined ranges of values defined and the one or more obtained measured diffraction signals of the patterned structure. For at least one parameter from amongst the material refraction parameters and the metrology device parameters, the at least one parameter is set to a fixed value within the range of values for the at least one parameter. At least one profile parameter of the patterned structure is determined using the optimized optical metrology model and the fixed value for the at least one parameter.
摘要:
Metrology data from a semiconductor treatment system is transformed using multivariate analysis. In particular, a set of metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. One or more essential variables for the obtained set of metrology data is determined using multivariate analysis. A first metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. The first obtained metrology data is not one of the metrology data in the set of metrology data earlier obtained. The first metrology data is transformed into a second metrology data using the one or more of the determined essential variables.