摘要:
Dominant negative alleles of human mismatch repair genes can be used to generate hypermutable cells and organisms. By introducing these genes into cells and transgenic animals, new cell lines and animal varieties with novel and useful properties can be prepared more efficiently than by relying on the natural rate of mutation. Methods of generating mutations in genes of interest and of making various cells mismatch repair defective through the use of chemicals to block mismatch repair in in vivo are disclosed.
摘要:
Dominant negative alleles of human mismatch repair genes can be used to generate hypermutable cells and organisms. By introducing these genes into cells and transgenic animals, new cell lines and animal varieties with novel and useful properties can be prepared more efficiently than by relying on the natural rate of mutation. These methods are useful for generating genetic diversity within immunoglobulin genes directed against an antigen of interest to produce altered antibodies with enhanced biochemical activity. Moreover, these methods are useful for generating antibody-producing cells with increased level of antibody production.
摘要:
Dominant negative alleles of human mismatch repair genes can be used to generate hypermutable cells and organisms. By introducing these genes into cells and transgenic animals, new cell lines and animal varieties with novel and useful properties can be prepared more efficiently than by relying on the natural rate of mutation. These methods are useful for generating genetic diversity within genes encoding for therapeutic antigens to produce altered polypeptides with enhanced antigenic and immunogenic activity. Moreover, these methods are useful for generating effective vaccines.
摘要:
Yeast cells are mutagenized to obtain desirable mutants. Mutagenesis is mediated by a defective mismatch repair system which can be enhanced using conventional exogenously applied mutagens. Yeast cells with the defective mismatch repair system are hypermutable, but after selection of desired mutant yeast strains, they can be be rendered genetically stable by restoring the mismatch repair system to proper functionality.
摘要:
Hybridoma lines that secrete human monoclonal antibodies with high binding specificity and biological activity, particularly neutralizing activity against granulocyte-macrophage colony stimulating factor, and methods of generating the hybridoma lines are provided. Target antigens and epitopes are also provided. The antibodies may be used in therapeutic methods, for example in the treatment of cancer, infectious disease, or autoimmune disease.
摘要:
This invention relates to the use of monoclonal and polyclonal antibodies that specifically bind to and have the ability in the alternative to become internalized by cells expressing endosialin and to induce an immune effector activity such as antibody-dependent cellular cytotoxicity. The antibodies are useful in specific delivery of pharmacologic agents to endosialin-expressing cells as well as in eliciting an immune-effector activity particularly on tumor and neovascular cells and precursors. The invention is also related to nucleotides encoding the antibodies of the invention, cells expressing the antibodies; methods of detecting cancer and neovascular cells; and methods of treating cancer and neovascular disease using the antibodies, derivatives and fragments.
摘要:
This invention provides antibodies that specifically bind and neutralize Staphylococcus enterotoxin B. In addition, nucleic acids encoding such antibodies, and cells that express such antibodies are provided. Also provided are methods for treating diseases mediated by, and for neutralizing Staphylococcus enterotoxin B.
摘要:
This invention provides antibodies that specifically bind and neutralize Staphylococcus enterotoxin B. In addition, nucleic acids encoding such antibodies, and cells that express such antibodies are provided. Also provided are methods for treating diseases mediated by, and for neutralizing Staphylococcus enterotoxin B.
摘要:
The invention provides methods for generating high titers of high-affinity antibodies from hybridoma cells produced by fusing myeloma cells with in vitro immunized donor cells. The hybridoma cells or mammalian expression cells with cloned antibody genes from the hybridomas producing the high-affinity antibodies may be mismatch repair defective due to defects of endogenous mismatch repair subunits of through expression of a dominant negative allele of a mismatch repair gene which allows the hybridoma cell to be hypermutable, may be rendered hypermutable by chemical means, or may be naturally mismatch repair deficient. High-affinity antibodies and high titer producer cells producing antibodies may be prepared by the methods of the invention.
摘要:
This invention relates to the use of monoclonal and polyclonal antibodies that specifically bind to and become internalized by mesothelin-positive cells and also induce an immune effector activity such as antibody dependent cellular cytotoxicity. The antibodies are useful in specific delivery of pharmacologic agents to mesothelin expressing cells as well as eliciting an immune-effector activity particularly on tumor cells and precursors. The invention is also related to cells expressing the monoclonal antibodies, polyclonal antibodies, antibody derivatives, such as human, humanized, and chimeric monoclonal antibodies, antibody fragments, mammalian cells expressing the monoclonal antibodies, derivatives and fragments, and methods of treating cancer using the antibodies, derivatives and fragments.