Abstract:
A noise reduction apparatus for digital cameras is presented that includes groups of one or more connected non-linear filter units. Each of the filter unit groups are driven by decimated input image data at a different level of decimation and the output of at least one of these filter unit groups serves as one of a plurality of inputs to another filter unit group driven at a different decimation level. Filtered image data from one or more filter unit groups is adaptively combined in response to one or more image metrics related to one or more local regional image characteristics.
Abstract:
A system and method is disclosed for multiple chips in which the connection between chips is made with registered inputs and registered outputs. This is achieved using a credit-based flow control protocol between the chips. The connection is made as part of a single packet-based on-chip and between-chip network with a common address space between the two chips.
Abstract:
Embodiments are directed towards determining within a digital camera whether a pixel belongs to a foreground or background segment within a given image by evaluating a ratio of derivative and deviation metrics in an area around each pixel in the image, or ratios of derivative metrics across a plurality of images. For each pixel within the image, a block of pixels are examined to determine an aggregate relative derivative (ARD) in the block. The ARD is compared to a threshold value to determine whether the pixel is to be assigned in the foreground segment or the background segment. In one embodiment, a single image is used to determine the ARD and the pixel segmentation for that image. Multiple images may also be used to obtain ratios of a numerator of the ARD, useable to determine an extent of the foreground.
Abstract:
A circuit includes a signal path having a node between a signal path input and a signal path output. A first inductive element is connected between the signal path input and the node and a first capacitive element whose capacitance is variably adjustable is connected between the node and the signal path output. A second variable-capacitance capacitive element is connected between the signal path input and ground. A second inductive element is connected between the node and ground, and a third inductive element is connected between the signal path output and ground.
Abstract:
The optimal configuration of a number of optional pipeline stages within the data paths of systems-on-chip is determined by application of a solver. The solver includes variables such as: the placement of modules physically within the floorplan of the chip; the signal propagation time; the logic gate switching time; the arrival time, after a clock edge, of a signal at each module port; the arrival time at each pipeline stage; and the Boolean value of the state of activation of each optional pipeline stage. The optimal configuration ensures that a timing constraint is met, if possible, with the lowest possible cost of pipeline stages.
Abstract:
A method for managing model updates by a first zone server, associated with a first zone model of a plurality of zone models, includes receiving a global model from a global server associated with the global model. The method also includes transmitting the global model to user equipment (UEs) in a first group of UEs associated with the first zone model. The method further includes receiving, from one or more UEs in the first group, model updates associated with the global model based on transmitting the global model. The method further includes transmitting, to the global server, an average of the model updates received from the one or more UEs. The method also includes updating the global model to generate the first zone model based on the model updates. The method further includes transmitting the first zone model to one or more UEs in the first group.
Abstract:
A computer-implemented method for tracking with visual object constraints includes receiving a lingual constraint and a video. A word embedding is generated based on the lingual constraint. A set of features is extracted for one or more frames of the video. The word embedding is cross-correlated to the set of features for the one or more frames of the video. A prediction indicating whether the lingual constraint is in the one or more frames of the video is generated based on the cross-correlation.
Abstract:
A method for generating a causal graph includes receiving a data set including observation data and intervention data corresponding to multiple variables. A probability distribution is determined for each variable based on the observation data. A likelihood of including each edge in the graph is computed based on the probability distribution and the intervention data. Each edge is a causal connection between variables of the multiple variables. The graph is generated based on the likelihood of including each edge. The graph may be updated by iteratively repeating the determination of the probability distribution and the computing of the likelihood of including each edge.
Abstract:
UE location determined by collecting and preprocessing signal data at a detector and sending extracted data to a remote locate server. The detector buffers samples from signals provided by receive channels, detects known reference signals from receive channels based on reference signal parameters, isolates symbols carrying the reference signal from frames, extracts data from symbols, and sends extracted data to locate server. The locate server receives the extracted data, estimates locate observables based on the extracted data and calculates the UE location based on the estimated locate observables, the reference signal parameters and the extracted data. The detector and/or the server may also generate correlation coefficients between reference signals carrying spectrum received from a serving cell and utilize the correlation coefficients to cancel a serving cell signal in symbols that include known in advance reference signals from the serving cell and one or more neighboring cells of the wireless system.
Abstract:
A low noise piezoelectric sensor, such as a piezoelectric acoustic transducer, includes a first conductive layer, a second conductive layer, and a piezoelectric layer between the first conductive layer and the second conductive layer. The piezoelectric layer comprises aluminum scandium nitride (AlScN) having a scandium content of greater than 15%, in which the scandium content and an aluminum content comprises 100% of the aluminum scandium nitride. In this way, the piezoelectric layer (or the sensor including the piezoelectric layer) achieves a dissipation factor of less than about 0.1%.