Abstract:
A computer-implemented method using a mobile device to inspect a rope. Visual data is captured, wherein the visual data includes one or more sections of the rope along a length thereof. The images are analyzed using a knowledge base implemented within logic of a control system of the mobile device. From the knowledge base, an expected life for the rope is calculated, and a report is generated on the mobile device to display the expected life of the rope as calculated from the knowledge base. The method further includes the step of processing the visual data to ready the visual data for analysis. This involves breaking down the visual data into tiles, wherein the visual data is broken into multiple image segments along the length of the rope.
Abstract:
A rope system for system level recoil control and method for providing a rope system for system level recoil control are provided. The rope system includes a first rope component and a second component, and the second rope component is connected in series to the first rope component. The first rope component includes a first rope subcomponent and a second rope subcomponent, the first rope subcomponent has predetermined failure strength and is designed and configured to be a controlled failure point for the system, and the second rope subcomponent has a predetermined elongation capability. Upon failure of the first rope subcomponent, the second rope subcomponent is configured to elongate to absorb a predetermined amount of a predetermined operational strain energy of the rope system and to stretch over a predetermined distance and/or predetermined period of time before the second rope subcomponent fails.
Abstract:
A round sling system comprises a bearing structure, a cover, and at least one organizer secured to the cover. The bearing structure is arranged to define a plurality of loop portions and to define at least one bearing structure end portion. The cover defines a cover chamber. The at least one organizer is configured to engage the bearing structure such that the at least one organizer maintains a position of the bearing structure relative to the cover and the at least one organizer maintains a spatial relationship of the loop portions at least within the at least one bearing structure end portion.
Abstract:
A rope structure adapted to engage an intermediate structure while loads are applied to ends of the rope structure comprises a primary strength component and a coating. The primary strength component comprises a plurality of fibers adapted to bear the loads applied to the ends of the rope structure. The coating comprises a mixture of a lubricant portion and a binder portion. The lubricant portion comprises particles having an average size of within approximately 0.01 microns to 2.00 microns. The binder portion is applied to the primary strength portion as a liquid and dries to support the lubricant portion relative to at least some of the fibers. The matrix supports the lubricant portion such that the lubricant portion reduces friction between at least some of the plurality of fibers and between at least some of the plurality of fibers and the intermediate structure.
Abstract:
A rope structure has a plurality of link structures each defining first and second ends and at least one organizer member. Each first end comprises at least first and second bend portions, and each second end comprises at least third and fourth bend portions. The first end of a first one of the plurality of link structures and the second end of a second one of the plurality of link structures engages the at least one organizer member such that the first and second bend portions of the first end of the first one of the plurality of link structures are substantially parallel to each other and substantially perpendicular to the third and fourth bend portions of the second end of the second one of the plurality of link structures.
Abstract:
A rope structure comprises a plurality of link structures each defining first and second ends. Each link structure is formed of synthetic fibers. Each first end comprises at least first and second bend portions. Each second end comprises at least third and fourth bend portions. The first end of a first one of the plurality of link structures engages the second end of a second one of the plurality of link structures such that the first and second bend portions of the first end of the first one of the plurality of link structures are substantially parallel to each other and substantially perpendicular to the third and fourth bend portions of the second end of the second one of the plurality of link structures.
Abstract:
A rope assembly that is adapted to extend between first and second attachment points comprises a line arranged to define a plurality of loops and at least one pair of organizers. The at least one pair of organizers is configured to engage the line such that line segments of the line between the at least one pair of organizers are maintained in a desired relationship with each other and such that the desired relationship facilitates transfer of loads through the rope assembly between the first and second attachment points.
Abstract:
A rope structure adapted to engage an intermediate structure while loads are applied to ends of the rope structure comprises a primary strength component and a coating. The primary strength component comprises a plurality of fibers adapted to bear the loads applied to the ends of the rope structure. The coating comprises a mixture of a lubricant portion and a binder portion. The lubricant portion comprises particles having an average size of within approximately 0.01 microns to 2.00 microns. The binder portion is applied to the primary strength portion as a liquid and dries to support the lubricant portion relative to at least some of the fibers. The matrix supports the lubricant portion such that the lubricant portion reduces friction between at least some of the plurality of fibers and between at least some of the plurality of fibers and the intermediate structure.
Abstract:
A rope structure comprising a plurality of fibers combined to form a plurality of yarns which are in turn combined to form a plurality of strands. The plurality of strands are combined using a single braid process to form the rope structure defining a void space. At least one of the fibers, the yarns, and the strands are configured substantially to reduce a volume of the void space and thereby maintain a shape of the rope structure when the rope structure is under load.
Abstract:
A rope structure adapted to engage an external structure comprising a primary strength component and a coating. The primary strength component comprises a plurality of fibers. The coating comprises a lubricant portion and a binder portion that fixes the lubricant portion relative to at least some of the fibers. The coating is applied to the primary strength component such that the lubricant portion reduces friction between adjacent fibers and reduces friction between fibers and the external structure.