Abstract:
An ultrasound diagnosis apparatus includes a transformer, a first power source, a second power source, and a switching unit. The transformer includes a primary winding and a secondary winding, and drives an ultrasound transducer based on a voltage generated in the secondary winding. The first and second power sources cause a potential difference. The switching unit switches a connection path between the primary winding and at least one of the first and second power sources to a first connection path that connects the first power source to one end of the primary winding and the second power source to the other end, a second connection path that connects the first power source to the other end and the second power source to the one end, or a ground connection path that connects the first power source or the second power source to the ground through the primary winding.
Abstract:
Embodiments shown and described herein relate, in general, to systems and methods for driving ultrasonic transducers and, more particularly, to systems and methods for controlling the output of high power ultrasonic transducers and improving performance of ultrasonic systems.
Abstract:
An electromechanical transducer according to an embodiment of the present invention is capable of selectively performing a transmitting and receiving operation by using elements of different shapes. The electromechanical transducer has a plurality of cells, each of which has a vibrating film including two electrodes provided with a gap therebetween, two driving and detecting units, a potential difference setter, and a switch. Each of the driving and detecting units implements a transmitting and/or a receiving function. A first or second element includes first or second electrodes which are electrically connected and further connected to the common first or second driving and detecting unit, respectively. The potential difference setter sets a predetermined potential difference between the reference potentials of the first and second driving and detecting units, respectively, and the switch switches between the first and second driving and detecting units to perform the transmitting and receiving operation.
Abstract:
A CMUT on CMOS imaging chip is disclosed. The imaging chip can use direct connection, CMOS architecture to minimize both internal and external connection complexity. Intelligent power management can enable the chip to be used for various imaging applications with strict power constraints, including forward-looking intra-vascular ultrasound imaging. The chip can use digital logic to control transmit and receive events to minimize power consumption and maximize image resolution. The chip can be integrated into a probe, or catheter, and requires minimal external connections. The chip can comprise integrated temperature control to prevent overheating.
Abstract:
An apparatus, system, and method for a Gigasonic Brush for cleaning surfaces is presented. One embodiment of the system includes an array of acoustic transducers coupled to a substrate where the individual acoustic transducers have sizes in the range of 9 um2 to 250,000 um2. The system may include a positioning mechanism coupled to at least one of a target surface or the array of acoustic transducers, and configured to position the array of acoustic transducers within 1 millimeter of a target surface. The system may also include a cleaning liquid supply arranged to provide cleaning liquid for coupling the array of acoustic transducers to the target surface. The system may further include a controller coupled to the array of acoustic transducers and configured to activate the array of acoustic transducers.
Abstract:
A portable electronic device (100) includes a vibrating transducer having a resilient support and a first mass supported by the first resilient support forming a mechanical resonator, and an electrical circuit coupled to the first vibrating transducer to apply a drive signal. A plurality of tactile vibration transducers (130, 140) can work in unison to produce strong tactile stimulus (216, 228, 230).
Abstract:
An ultrasonic broadband frequency transducer pest repulsion system comprises: a variable frequency generator; at least one ultrasonic frequency amplifier coupled to the variable frequency generator; and a transducer unit coupled to the ultrasonic frequency amplifier. The transducer unit comprises: a first transducer tuned at a first frequency located between a lower frequency and an upper frequency; a second transducer tuned at a second frequency located between the first frequency and the upper frequency, and a third transducer tuned at a third frequency located between the second frequency and the upper frequency.
Abstract:
An ultrasonic transducer array, and a method for manufacturing it, having a plurality of transducer elements aligned along an array axis in an imaging plane. Each transducer element includes a piezoelectric layer and one or more acoustic matching layers. The piezoelectric layer has a concave front surface overlayed by a front electrode and a rear surface overlayed by a rear electrode. The shape of each transducer element is selected such that it is mechanically focused into the imaging plane. A backing support holds the plurality of transducer elements in a predetermined relationship along the array axis such that each element is mechanically focused in the imaging plane.
Abstract:
An ultrasonic transducer array having a plurality of transducer elements aligned along an array axis in an imaging plane. Each transducer element includes a piezoelectric layer and one or more acoustic matching layers. The piezoelectric layer has a concave front surface overlayed by a front electrode and a rear surface overlayed by a rear electrode. The shape of each transducer element is selected such that it is mechanically focused into the imaging plane. A backing support holds the plurality of transducer elements in a predetermined relationship along the array axis such that each element is mechanically focused in the imaging plane.
Abstract:
Apparatus and methods for controlling electrostrictive transducer sensitivity in a pulse-echo medical ultrasound system. Certain characteristics of each transducer element are tested after manufacture and recorded on a storage medium. The stored data is then used, along with certain model relations, for monitoring certain operational parameters of the transducer during use, and feedback compensation applied for maintaining the transducer sensitivity substantially constant. The parameters to be monitored may include the temperature, acoustic pressure, input power, and a figure of merit determined from the dielectric constant and coupling coefficient.