Abstract:
The invention relates to a method for the desorption of a sorbent by an air stream which is delivered by a blower and, prior to entering the sorbent, is heated. In order to reduce the desorption time, provision is made for adjusting the mass of the air stream as a function of the outlet temperature of the air stream exiting from the sorbent, in such a way that, when a preset temperature limit value is reached, the mass of the air stream is reduced, and the desorption is continued with an air stream heated to a higher temperature. The method is particularly suitable for the desorption of adsorbent in sorption reactors contained in refrigerant-free air conditioning plants.
Abstract:
Method of and apparatus for heating or cooling a motor vehicle passenger compartment which communicates with a supply air duct for supplying a stream of air to the compartment and a used air duct for exhausting air from the compartment. A heat source in the form of a sorption reactor transfers heat energy to the air stream, with the reactor being provided with a sorbent such as zeolite or the like. The air stream passes through the reaction chamber of the reactor for extracting moisture from the air stream and adding adsorption heat to the air stream. The air stream then passes through an inflow duct before passing through the reactor, and passes from the reactor through an outflow duct at the outlet end of the reactor. A fresh air duct is provided for selectively feeding fresh air into the inflow duct, and an exhaust air duct opening into the atmosphere is provided for selectively communicating the outflow duct with the exhaust air duct.
Abstract:
An adsorption cooler operating in accordance with the periodical adsorption principle and consisting of at least one adsorption container filled with zeolite. At least one condenser with a collecting container for the water which desorbs from the zeolite and an insulated cooling container which may be closed by a shut-off member are serially connected with the adsorption container. In the cooling container, the adsorption cooler generates ice in stages which acts as a cold buffer. The system is usable for example in solar cooling systems, vehicle air conditioning units and air conditioning insulation as well as beverage coolers.
Abstract:
An air conditioning unit for motor cars is characterised thereby that the waste heat of the engine of the car is utilised for powering said air conditioning system, in combination with a liquid pump, thus avoiding a significant additional load on the engine of the car.
Abstract:
The present disclosure provides absorption refrigeration systems, assemblies and methods utilizing waste heat for climate control and/or cooling (e.g., electric systems cooling; electronics cooling; motor cooling; generator cooling; oil cooling; etc.). More particularly, the present disclosure provides absorption refrigeration systems, assemblies and methods utilizing waste heat (e.g., from aviation/aerospace systems, such as hybrid-electric/electric aircraft/aerospace systems or the like) for climate control and/or cooling (e.g., electronics cooling; motor cooling; generator cooling; oil cooling; electric systems cooling for energy savings on aviation/aerospace systems, such as hybrid-electric/electric aircraft/aerospace systems). In example embodiments, the waste heat utilization provides up to 100% of the energy control system (ECS) input energy, and certain configurations allow for substantially no electric energy input (e.g., allows for gravity flow only).
Abstract:
An adsorption system can be used as part of a climate control system in a vehicle or in any other space requiring heating or cooling. The adsorbent system can include an enclosure, a plurality of layers arranged in a stack inside the enclosure, and a vapor channel inside the enclosure.
Abstract:
A humidification device includes: an adsorber having an adsorbent that adsorbs and desorbs moisture; an adsorption case that forms an accommodating space to accommodate the adsorber; a first introduction portion that introduces cooled air produced by a cooling portion into the adsorption case; a second introduction portion that introduces heated air produced by the heating portion into the adsorption case; and a humidification-side guiding portion that guides humidification air humidified by the moisture desorbed within the adsorption case, to the vehicle interior. The first introduction portion is connected to a bottom surface portion of the air-conditioning case on the air-flow downstream side of the cooling portion in the air-conditioning case.
Abstract:
A system for cooling a vehicle compartment using a twin cell thermal battery and waste heat. Cool air from the evaporators of a twin cell thermal battery system is used to chill a compartment, such as an icebox in a trunk or a cabin of a vehicle. The energy needed to create the cooling effect for the cool compartment comes directly from the waste heat of vehicle exhaust gas. The system provides for the air conditioning and charging mode to work simultaneously because of a twin cell battery configuration. A thermoelectric generator (TEG) is also provided in addition to the twin cell battery thereby making the system self-powered. The system uses energy that would otherwise be lost to the environment to provide a cooling source within the vehicle.
Abstract:
Provided is an absorption type heat pump device including: a battery, a battery case, a regenerator, a condenser, an evaporator, an absorber, and a controller, in which, in the cooling operation, heat exchange between the absorber and the outside of the absorber is performed, the refrigerant having a liquid phase is supplied to the battery case from the condenser, and the refrigerant having a gas phase which is obtained by evaporating the refrigerant having a liquid phase by the heat of the battery, is supplied to the absorber, and in the heating operation, heat exchange between the absorber and the battery case is performed, the refrigerant having a gas phase or a liquid phase is supplied to the absorber from the evaporator, and the absorbing solution with relatively high concentration which is accommodated in the regenerator is supplied to the absorber.