Abstract:
A modified kraft pulp fiber with unique properties is provided. The modified fiber can be a modified bleached kraft fiber that is almost indistinguishable from its conventional counterpart, except that it has a low degree of polymerization (DP). Methods for making the modified fiber and products made from it are also provided. The method can be a one step acidic, iron catalyzed peroxide treatment process that can be incorporated into a single stage of a multi-stage bleaching process. The products can be chemical cellulose feedstocks, microcrystalline cellulose feedstocks, fluff pulps and products made from them.
Abstract:
A modified kraft pulp fiber with unique properties is provided. The modified fiber can be a modified bleached kraft fiber that is almost indistinguishable from its conventional counterpart, except that it has a low degree of polymerization (DP). Methods for making the modified fiber and products made from it are also provided. The method can be a one step acidic, iron catalyzed peroxide treatment process that can be incorporated into a single stage of a multi-stage bleaching process. The products can be chemical cellulose feedstocks, microcrystalline cellulose feedstocks, fluff pulps and products made from them.
Abstract:
Bleaching methods and formulations for bleaching/delignification processes for chemical pulp are provided. The bleaching methods utilize peroxide and an organomanganese complex under aqueous caustic conditions, increasing bleaching efficiency of the overall bleaching/delignification process. Chemical pulp having increased brightness can be obtained at decreased temperatures and with reduced stage time, resulting in reduced chemical consumption and improved energy efficiency.
Abstract:
A method for bleaching pulp is provided. In the method at least one tertiary amine compound is introduced into a process stage of bleaching. This process stage is a stage which comprises mixing pulp and a chlorine compound capable of bleaching.