Abstract:
A modular rail system for suspending sliding doors, including at least one rail profile having a top side arranged for being fixed against a horizontal wall part, a bottom side having a rail portion for carrying suspension wheels of a sliding door, a first lateral side arranged for being fixed against a vertical wall part, and an open second lateral side. On both opposite lateral sides the rail profile includes recesses having substantially the same shape for engaging complementary spacer elements. A sliding door system including a rail system, at least one sliding door with suspension wheels and at least one repositionable braking/stopping element having a stop for defining an extreme position of the sliding door and a releasable fixing element for fixing the braking/stopping element in the rail system. The fixing element is spaced a predetermined distance from the stop, chosen for maintaining user accessibility to the fixing element while the stop is located in a user inaccessible position.
Abstract:
A closet door support mechanism that provides rotation and translation of a door used to close the entry to a room such as a closet is disclosed. An example of the mechanism includes a first track that is generally straight and is connected to a first track retraction section by a curved section. The track sections are mounted a distance from the floor, and allow movement of a closet door through translation and rotation to close the entry of the closet.
Abstract:
In an aspect, a lifter plate is provided that is capable of a relatively strong connection to a vehicle window. The lifter plate includes a lifter plate body including a first side wall and a second side wall configured to receive a vehicle window therebetween, a window holding member positionable in a locking position to prevent the withdrawal of the vehicle window from between the first and second side walls, and a locking member positioned to prevent the movement of the window holding member out of the locking position in the event of a force urging the withdrawal of the vehicle window from between first and second side walls.
Abstract:
Movable partition systems include a vertical alignment structure including at least one roller element coupled to a portion of a movable partition and a ramp configured to abut against the at least one roller element to vertically align the portion of the movable partition to engage with a strike plate. Methods of vertically aligning the movable partition include coupling at least one vertical alignment structure to the movable partition including coupling at least one structural frame member to the movable partition and coupling the at least one roller element to the at least one structural frame member and installing at least one ramp to an overhead structure configured to abut the at least one roller element and vertically align a leading end of the movable partition.
Abstract:
A motor vehicle window regulator in which a matrix coating is applied to a metal blank. The matrix coating is comprised of particles of a fluoropolymer (such as polytetrafluoroethylene) carried in an organic polymer binder. The coated metal blank is cold-formed to the shape of a guide rail with a longitudinal track disposed along an edge of the guide rail. A window slider is mounted onto the guide rail to slide along the longitudinal track, so that the fluoropolymer particles lubricate the sliding of the window slider on the longitudinal track.
Abstract:
The invention relates to a device (1) for slidable devices such as sliding gates or sliding doors. In order to render possible a compact and nevertheless stable construction of the device (1), it is provided according to the invention that the device (1) has a supporting or retaining device (2) and a shorter runner rail (3) as well as a longer runner rail (4), wherein rolling elements (5) and/or sliding elements are provided on the supporting or retaining element (2), via which rolling elements and/or sliding elements the shorter runner rail (3) can be moved, and wherein further rolling elements (6) and/or sliding elements are provided on the shorter runner rail (3) and optionally on the supporting or retaining element (2), via which further rolling elements and/or sliding elements the longer runner rail (4) can be moved.
Abstract:
The invention relates to a windbreak system formed by: a set of independent panels that can be controlled individually, by moving the same longitudinally along an upper rail and a lower rail: and a folding door at one of the ends. Each panel and door comprises a rotation shaft and a folding shaft. The panels are moved manually, without bearing on rollers, and the entire weight of the panels rest on two strips of self-lubricating polymers that are inserted into two slots in the lower rail. The upper and lower rails are identical and have a rectangular cross-section and the panels are made from glass.
Abstract:
Movable partition systems include a vertical alignment structure including at least one roller element coupled to a portion of a movable partition and a ramp configured to abut against the at least one roller element to vertically align the portion of the movable partition to engage with a strike plate. Methods of vertically aligning the movable partition include coupling at least one vertical alignment structure to the movable partition including coupling at least one structural frame member to the movable partition and coupling the at least one roller element to the at least one structural frame member and installing at least one ramp to an overhead structure configured to abut the at least one roller element and vertically align a leading end of the movable partition.
Abstract:
A carriage includes body, at which at least one first roller is freely rotatably mounted, as well as a carriage suspension member with an upper terminal section is supported at or in the body and, with regard to the body, is pivotable about at least one axis of rotation extending parallel to the longitudinal extension of the carriage. A lower terminal section, the carriage suspension member is configured to extend in a downward direction towards a panel to be moved. The lower terminal section is adapted to suspend the panel to be moved therefrom. An axis of rotation of the at least one first roller extends transversely to the downward direction and transversely to a tangent of the travel path of the at least one panel to be moved in an area of the at least one first roller.
Abstract:
In an example, a vehicle door module has a carrier carrying a plurality of functional door hardware components. The carrier defines a wet side facing towards a door cavity and a dry side facing away from the door cavity. The door includes an inner door panel having a front pocket and a rear pocket. The carrier includes front and rear latch presenters and carries front and rear door latches on the dry side thereof which seat in the front and rear door pockets. The latches are connected to reinforcement plates which are connected by fasteners at positions surrounding the door pockets thus enabling each latch to be easily accessed for service by simply removing the corresponding reinforcement plate, which may be located under an easily removed interior trim panel.